首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We report the existence of zero-energy surface states localized at zigzag edges of bilayer graphene. Working within the tight-binding approximation we derive the analytic solution for the wave functions of these peculiar surface states. It is shown that zero-energy edge states in bilayer graphene can be divided into two families: (i) states living only on a single plane, equivalent to surface states in monolayer graphene and (ii) states with a finite amplitude over the two layers, with an enhanced penetration into the bulk. The bulk and surface (edge) electronic structure of bilayer graphene nanoribbons is also studied, both in the absence and in the presence of a bias voltage between planes.  相似文献   

2.
3.
石墨烯作为一种新型非线性光学材料,在光子学领域具有重要的应用前景,引起研究人员的极大兴趣.本文运用量子化学计算方法研究了边界引入碳碳双键(C=C)和掺杂环硼氮烷(B3N3)环对石墨烯量子点非线性光学性质和紫外-可见吸收光谱的影响.研究发现,扶手椅边界上引入C=C双键后,六角形石墨烯量子点分子结构对称性降低,电荷分布对称性发生破缺,导致分子二阶非线性光学活性增强.石墨烯量子点在从扶手椅型边界向锯齿型边界过渡的过程中,随着边界C=C双键数目的增加,六角形石墨烯量子点和B3N3掺杂六角形石墨烯量子点的极化率和第二超极化率分别呈线性增加.此外,边界对石墨烯量子点的吸收光谱也有重要影响.无论是石墨烯量子点还是B3N3掺杂石墨烯量子点,扶手椅型边界上引入C=C双键导致最高占据分子轨道能级升高,最低未占分子轨道能级的降低,前线分子轨道能级差减小,因而最大吸收波长发生了红移.中心掺杂B3N3环后会增大石墨烯量子点的分子前线轨道能级差,导致B3N3掺杂后的石墨烯量子点紫外-可见吸收光谱发生蓝移.本文研究为边界修饰调控石墨烯量子点非线性光学响应提供了一定的理论指导.  相似文献   

4.
We study the electronic structures and the optical absorption spectra of the multilayer graphenes in the effective mass approximation. We decompose the Hamiltonian of graphene with an arbitrary thickness into smaller subsystems effectively identical to monolayer or bilayer graphene, and express the optical spectrum as a summation over the subsystems. We include the full band parameters which compose the bulk graphite, and closely study their effects on the band structure. We found that the particular band parameters destroying the electron–hole symmetry can affect the optical spectrum through shift of the absorption edge.  相似文献   

5.
Random fluctuations of the shot-noise power in disordered graphene nanoribbons are studied. In particular, we calculate the distribution of the shot noise of nanoribbons with zigzag and armchair edge terminations. We show that the shot noise statistics is different for each type of these two graphene structures, which is a consequence of the presence of different electron localizations: while in zigzag nanoribbons electronic edge states are Anderson localized, in armchair nanoribbons edge states are absent, but electrons are anomalously localized. Our analytical results are verified by tight binding numerical simulations with random hopping elements, i.e., off diagonal disorder, which preserves the symmetry of the graphene sublattices.  相似文献   

6.
Acoustic analog of monolayer graphene has been designed by using silicone rubber spheres of honeycomb lattices embedded in water. The dispersion of the structure has been studied theoretically using the rigorous multiple-scattering method. The energy spectra with the Dirac point have been verified and zigzag edge states have been found in ribbons of the structure, which are analogous to the electronic ones in graphene nanoribbons. The guided modes along the zigzag edge excited by a point source have been numerically demonstrated. The open cavity and “Z” type edge waveguide with 60° corners have also been realized by using such edge states.  相似文献   

7.
Random fluctuations of the shot-noise power in disordered graphene nanoribbons are studied. In particular, we calculate the distribution of the shot noise of nanoribbons with zigzag and armchair edge terminations. We show that the shot noise statistics is different for each type of these two graphene structures, which is a consequence of the presence of different electron localizations: while in zigzag nanoribbons electronic edge states are Anderson localized, in armchair nanoribbons edge states are absent, but electrons are anomalously localized. Our analytical results are verified by tight binding numerical simulations with random hopping elements, i.e., off diagonal disorder, which preserves the symmetry of the graphene sublattices.  相似文献   

8.
The electronic properties of graphene are very sensitive to its dielectric environment. The coupling to a metal substrate can give rise to many novel quantum effects in graphene, such as band renormalization and plasmons with unusual properties, which are of high technological interest. Infrared nanoimaging are very suitable for exploring these effects considering their energy and length scales. Here, we report near-field infrared nanoimaging studies of graphene on copper synthesized by chemical vapor deposition. Remarkably, our measurements reveal three different types of near-field optical responses of graphene, which are very distinct from the near-field edge fringes observed in the substrate. These results can be understood from the modification of optical conductivity of graphene due to its coupling with the substrate. Our work provides a framework for identifying the near-field response of graphene in graphene/metal systems and paves the way for studying their novel physics and potential applications.  相似文献   

9.
In this work, by using different laser excitation energies, we obtain important electronic and vibrational properties of mono- and bi-layer graphene. For monolayer graphene, we determine the phonon dispersion near the Dirac point for the in-plane transverse optical (iTO) mode. This result is compared with recent calculations that take into account electron–electron correlations for the phonon dispersion around the K point. For bilayer graphene we extract the Slonczewski–Weiss–McClure band parameters and compare them with recent infrared measurements. We also analyze the second-order feature in the Raman spectrum for trilayer graphene.  相似文献   

10.
We study the electronic edge states of graphene in the quantum Hall regime. For non-interacting electrons, graphene supports both electron-like and hole-like edge states. We find there are half as many edge states of each type in the lowest Landau level compared to higher Landau levels, leading to a quantization of the Hall conductance that is shifted relative to standard two dimensional electron gases. We also consider the effect of quantum Hall ferromagnetism on this edge structure, and find an unusual Luttinger liquid at the edge in undoped graphene. This arises due to a domain wall that forms near the edge between partially spin-polarized and valley-polarized regions. The domain wall has a U(1) degree of freedom which generates both collective and charged gapless excitations, whose consequences for tunneling experiments are discussed.  相似文献   

11.
We fabricated a monolayer graphene transistor device in the shape of the Hall-bar structure, which produced an exactly symmetric signal following the sample geometry. During electrical characterization, the device showed the standard integer quantum Hall effect of monolayer graphene except for a broader range of several quantum Hall plateaus corresponding to small filling factors in the electron region. We investigated this anomaly on the basis of localized states owing to the presence of possible electron traps, whose energy levels were estimated to be near the Dirac point. In particular, the inequality between the filling of electrons and holes was ascribed to the requirement of excess electrons to fill the trap levels. The relations between the quantum Hall plateau, Landau level, and filling factor were carefully analyzed to reveal the details of the localized states in this graphene device.  相似文献   

12.
13.
We grow epitaxial graphene monolayers on Ru(0001) that cover uniformly the substrate over lateral distances larger than several microns. The weakly coupled graphene monolayer is periodically rippled and it shows charge inhomogeneities in the charge distribution. Real space measurements by scanning tunneling spectroscopy reveal the existence of electron pockets at the higher parts of the ripples, as predicted by a simple theoretical model. We also visualize the geometric and electronic structure of edges of graphene nanoislands.  相似文献   

14.
《Current Applied Physics》2015,15(6):691-697
Density functional theory based calculations revealed that optical properties of AA-stacked bilayer graphene are anisotropic and highly sensitive to the interlayer separation. In the long wave length limit of electromagnetic radiation, the frequency dependent response of complex dielectric function becomes vanishingly small beyond the optical frequency of 25.0 eV. Besides, static dielectric constant shows a saturation behaviour for parallel polarization of electric field vector when interlayer spacing is greater than 2.75 Å. As a consequence, an appropriate modification of effective fine structure constant is observed as a function of layer separation. Moreover, the bilayer systems are highly transparent in the optical frequency range of 7.0–10.0 eV. The electron energy loss function exhibits two different in-plane collective (plasmon) excitations and a single out of plane plasmon excitation. The spectral nature of different frequency dependent optical properties is observed to be very similar to that of the monolayer pristine graphene apart from their exact numerical values.  相似文献   

15.
梁振江  刘海霞  牛燕雄  尹贻恒 《物理学报》2016,65(13):138501-138501
提出了一种具有超薄有源层的谐振腔增强型石墨烯光电探测器的设计方法,利用谐振腔结构可以将光场限制在腔内,有效增强探测器的吸收.通过研究谐振腔内光场谐振条件及谐振模式下探测器响应度增强的机理,建立了驻波效应下谐振腔增强型石墨烯光电探测器光吸收模型,仿真分析谐振腔反射镜反射率、谐振腔腔长对于腔内光场增强器件性能的影响.理论分析表明,谐振腔增强型石墨烯光电探测器在850 nm处响应度可达0.5 A/W,相比无腔状态下提高了32倍;半高全宽为10 nm.采用谐振腔结构能够提高石墨烯光电探测器件的光电响应,为解决光电探测器响应度与响应速度之间的相互制约关系提供了途径.  相似文献   

16.
The electronic structures of Au monolayers on the Ru(0001) and graphene-coated Ru(0001) surfaces have been calculated by DFT method using the supercell (repeated-slab) approach. The local densities of states (LDOS) and band structures of the monolayer and bilayer Au films adsorbed on the graphene/Ru(0001) and those of free hexagonal Au layers are found to be very similar. This result indicates that the monolayer graphene almost completely screens the Au layers from the Ru(0001) substrate surface, so that electronic properties of Au films adsorbed on graphene are determined predominantly by the electronic structure of the Au adlayers, essentially independent on the electronic structure of the substrate surface.  相似文献   

17.
In this work, we report a theoretical study of the electronic transport through a step-shaped graphene nanoribbon by the tight-binding method. We found that the conductance suppression near the Dirac point is pervasive, and the top boundary configuration is irrelevant; this arises from the antiresonance effect associated with an edge state localized at the transition edge of the top layer of graphene nanoribbon. In addition, the conductance can be easily tuned from zero to unity by a gate bias in the bilayer graphene nanoribbon, this feature will help us to realize the electric nanoswitch.  相似文献   

18.
用基于密度泛函理论的原子紧束缚方法计算研究单层石墨烯纳米圆片和纳米带的电子结构,并结合第一原理和非平衡函数法计算量子输运特性.通过电子能态和轨道密度分布研究纳米碳原子层的电子成键状态,结合电子透射谱、电导和电子势分布分析电子散射与输运机制.石墨烯纳米带和纳米圆片分别呈现金属和半导体的能带特征,片层边缘上电极化分别沿垂直和切向方向,电子电导出现较大的差异,来源于石墨烯纳米圆片边缘的突出碳原子环对电子的强散射.石墨烯纳米带的电子透射谱表现为近似台阶式变化并在费米能级处存在弹道电导峰,而石墨烯纳米圆片的电子能带和透射谱在费米能级处开口并且因量子限制作用呈现更加离散的多条高态密度窄能带和尖锐谱峰.  相似文献   

19.
The unique electronic structure of graphene leads to several distinctive optical properties. In this brief review, we outline the current understanding of two general aspects of optical response of graphene: optical absorption and light emission. We show that optical absorption in graphene is dominated by intraband transitions at low photon energies (in the far-infrared spectral range) and by interband transitions at higher energies (from mid-infrared to ultraviolet). We discuss how the intraband and interband transitions in graphene can be modified through electrostatic gating. We describe plasmonic resonances arising from the free-carrier (intraband) response and excitonic effects that are manifested in the interband absorption. Light emission, the reverse process of absorption, is weak in graphene due to the absence of a band gap. We show that photoluminescence from hot electrons can, however, become observable either through femtosecond laser excitation or strong electrostatic gating.  相似文献   

20.
We present a review of the electronic compressibility of monolayer and bilayer graphene. We focus on describing theoretical calculations of the effects of electron–electron interactions and various types of disorder, and also give a summary of current experiments and describe which aspects of theory they support. We also include a full analysis of all commonly used contributions to the tight-binding Hamiltonian of bilayer graphene and their effects on the compressibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号