首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infrared (IR) spectrum of the isolated protonated neurotransmitter dopamine was recorded in the fingerprint range (570-1880 cm(-1)) by means of IR multiple photon dissociation (IRMPD) spectroscopy. The spectrum was obtained in a Fourier transform ion cyclotron resonance mass spectrometer equipped with an electrospray ionization source, which was coupled to a free electron laser (FEL). The spectroscopic studies are complemented by quantum chemical calculations at the B3LYP and MP2 levels of theory using the cc-pVDZ basis set. Several low-energy isomers with protonation occurring at the amino group are predicted in the energy range 0-50 kJ mol(-1). Good agreement between the measured IRMPD spectrum and the calculated linear absorption spectra is observed for the two gauche conformers lowest in energy (ΔE) and free energy (ΔG) at both levels of theory, denoted g-1 and g+1. Minor contributions of higher lying gauche isomers cannot be ruled out spectroscopically but their calculated energies suggest only minor population in the sampled ion cloud. In all these gauche structures, one of the three protons of the ammonium group is pointing toward the catechol subunit, thereby maximizing the intramolecular NH-π interaction of the positive charge with the aromatic ring. In total, 16 distinct vibrational bands are observed in the IRMPD spectrum and assigned to individual normal modes of the energetically most stable g-1 conformer, with deviations of less than 24 cm(-1) (average 11 cm(-1)) between measured and calculated frequencies. Comparison with neutral dopamine reveals the effects of protonation on the geometric and electronic structure.  相似文献   

2.
The gas-phase structures of protonated and sodium cationized complexes of triethyl phosphate, [TEP + H]+ and [TEP + Na]+, are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy using tunable IR radiation generated by a free electron laser, a Fourier transform ion cyclotron resonance mass spectrometer with an electrospray ionization source, and theoretical electronic structure calculations. Measured IRMPD action spectra are compared to linear IR spectra calculated at the B3LYP/6-31 G(d,p) level of theory to identify the structures accessed in the experimental studies. For comparison, theoretical studies of neutral TEP are also performed. Sodium cationization and protonation produce changes in the central phosphate geometry, including an increase in the alkoxy ∠OPO bond angle and shortening of the alkoxy P–O bond. Changes associated with protonation are more pronounced than those produced by sodium cationization.  相似文献   

3.
The gas-phase IR spectrum of the protonated neurotransmitter serotonin (5-hydroxytryptamine) was measured in the fingerprint range by means of IR multiple photon dissociation (IRMPD) spectroscopy. The IRMPD spectrum was recorded in a Fourier transform ion cyclotron resonance mass spectrometer coupled to an electrospray ionization source and an IR free electron laser. Quantum chemical calculations at the B3LYP and MP2 levels of theory using the cc-pVDZ basis set yield six low-energy isomers in the energy range up to 40 kJ/mol, all of which are protonated at the amino group. Protonation at the indole N atom or the hydroxyl group is substantially less favorable. The IRMPD spectrum is rich in structure and exhibits 22 distinguishable features in the spectral range investigated (530-1885 cm(-1)). The best agreement between the measured IRMPD spectrum and the calculated linear IR absorption spectra is observed for the conformer lowest in energy at both levels of theory, denoted g-1. In this structure, one of the three protons of the ammonium group points toward the indole subunit, thereby maximizing the intramolecular NH(+)-π interaction between the positive charge of the ammonium ion and the aromatic indole ring. This mainly electrostatic cation-π interaction is further stabilized by significant dispersion forces, as suggested by the substantial differences between the DFT and MP2 energies. The IRMPD bands are assigned to individual normal modes of the g-1 conformer, with frequency deviations of less than 29 cm(-1) (average <13 cm(-1)). The effects of protonation on the geometric and electronic structure are revealed by comparison with the corresponding structural, energetic, electronic, and spectroscopic properties of neutral serotonin.  相似文献   

4.
Gaseous [C7H7O]+ ions have been formed by protonation of benzaldehyde or tropone (2,4,6-cycloheptatrienone) in the cell of an FT-ICR mass spectrometer using C2H5(+) as a Br?nsted acid. The so-formed species have been assayed by infrared multiphoton dissociation (IRMPD) using the free electron laser (FEL) at the CLIO (Centre Laser Infrarouge Orsay) facility. The IRMPD features are quite distinct for ions from the two different precursors, pointing to two different isomers. A number of potential structures for [C7H7O]+ ions have been optimized at the B3LYP/6-31+G(d,p) level of theory, and their relative energies and IR spectra are reported. On this basis, the IRMPD spectra of [C7H7O]+ ions are found to display features characteristic of O-protonated species, with no evidence of any further skeletal rearrangements. The so-formed ions are thus hydroxy-substituted benzylium and tropylium ions, respectively, representative members of the benzylium/tropylium ion family. The IRMPD assay using the FEL laser light has allowed their unambiguous discrimination where other mass spectrometric techniques have yielded a less conclusive answer.  相似文献   

5.
The infrared (IR) spectrum of protonated histamine (histamineH(+)) was recorded in the 575-1900 cm(-1) fingerprint range by means of IR multiple photon dissociation (IRMPD) spectroscopy. The IRMPD spectrum of mass-selected histamineH(+) ions was obtained in a Fourier transform ion cyclotron resonance mass spectrometer coupled to an electrospray ionization source and an IR free electron laser. A variety of isomers were identified and characterized by quantum chemical calculations at the B3LYP and MP2 levels of theory using the cc-pVDZ basis set. The low-energy isomers are derived from various favourable protonation sites--all of which are N atoms--and different orientations of the ethylamine side chain with respect to the heterocyclic imidazole ring. The measured IRMPD spectrum was monitored in the NH(3) loss channel and exhibits 14 bands in the investigated spectral range, which were assigned to vibrational transitions of the most stable isomer, denoted A. This imidazolium-type isomer A with protonation at the imidazole ring and gauche conformation of the ethylamine side chain is significantly stabilized by an intramolecular ionic Nπ-H(+)···Nα hydrogen bond to the ethylamino group. The slightly less stable ammonium-type isomer B with protonation at the ethylamino group is only a few kJ mol(-1) higher in energy and may also provide a minor contribution to the observed IRMPD spectrum. Isomer B is derived from A by simple proton transfer from imidazole to the ethylamino group along the intramolecular Nπ-H(+)···Nα hydrogen bond via a low barrier, which is calculated to be of the order of 5-15 kJ mol(-1). Significantly, the most stable structure of isolated histamineH(+) differs from that in the condensed phase by both the protonation site and the conformation of the side chain, emphasizing the important effects of solvation on the structure and function of this neurotransmitter. The effects of protonation on the geometric and electronic structure of histamine are evaluated by comparing the calculated properties of isomer A with those of the most stable structure of neutral histamine A(n).  相似文献   

6.
Protonated fluorobenzene ions (C6H6F+) are produced by chemical ionization of C6H5F in the cell of a FT-ICR mass spectrometer using either CH5+ or C2H5+. The resulting protonation sites are probed by IR multiphoton dissociation (IRMPD) spectroscopy in the 600-1700 cm-1 fingerprint range employing the free electron laser at CLIO (Centre Laser Infrarouge Orsay). Comparison with quantum chemical calculations reveals that the IRMPD spectra are consistent with protonation in para and/or ortho position, which are the thermodynamically favored protonation sites. The lack of observation of protonation at the F substituent, when CH5+ is used as protonating agent, is attributed to the low-pressure conditions in the ICR cell where the ions are produced. Comparison of the C6H6F+ spectrum with IR spectra of C6H5F and C6H7+ reveals the effects of both protonation and H F substitution on the structural properties of these fundamental aromatic molecules.  相似文献   

7.
The gas-phase structures of protonated thymidine, [dThd + H]+, and its modified form, protonated 5-methyluridine, [Thd + H]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy combined with electronic structure calculations. IRMPD action spectra are measured over the ranges extending from ~600 to 1900 cm–1 and ~2800 to 3800 cm–1 using the FELIX free electron laser and an optical parametric oscillator/amplifier (OPO/OPA) laser system, respectively. Comparisons between the B3LYP/6-311+G(d,p) linear IR spectra calculated for the stable low-energy conformers and the measured IRMPD spectra are used to determine the most favorable tautomeric conformations of [dThd + H]+ and [Thd + H]+ and to identify those populated in the experiments. Both B3LYP and MP2 levels of theory predict a minor 2,4-dihydroxy tautomer as the ground-state conformer of [dThd + H]+ and [Thd + H]+ indicating that the 2'-hydroxyl substituent of Thd does not exert a significant impact on the structural features. [dThd + H]+ and [Thd + H]+ share parallel IRMPD spectral profiles and yields in both the FELIX and OPO regions. Comparisons between the measured IRMPD and calculated IR spectra suggest that minor 2,4-dihydroxy tautomers and O2 protonated conformers of [dThd + H]+ and [Thd + H]+ are populated in the experiments. Comparison of this work to our previous IRMPD spectroscopy study of protonated 2'-deoxyuridine and uridine suggests that the 5-methyl substituent alters the preferences of O2 versus O4 protonation.
Graphical Abstract ?
  相似文献   

8.
The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different ground conformers.  相似文献   

9.
The gas-phase structures of protonated uracil, thymine, and cytosine are probed by using mid-infrared multiple-photon dissociation (IRMPD) spectroscopy performed at the Free Electron Laser facility of the Centre Laser Infrarouge d'Orsay (CLIO), France. Experimental infrared (IR) spectra are recorded for ions that were generated by electrospray ionization, isolated, and then irradiated in a quadrupole ion trap; the results are compared to the calculated infrared absorption spectra of the different low-lying isomers (computed at the B3LYP/6-31++G(d,p) level). For each protonated base, the global energy minimum corresponds to an enolic tautomer, whose infrared absorption spectrum matched very well with the experimental IRMPD spectrum, with the exception of a very weak IRMPD signal observed at about 1800 cm(-1) in the case of the three protonated bases. This signal is likely to be the signature of the second-energy-lying oxo tautomer. We thus conclude that within our experimental conditions, two tautomeric ions are formed which coexist in the quadrupole ion trap.  相似文献   

10.
The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation–cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000–1900 cm-1. The IRMPD spectra of the Li+(cytosine), Na+(cytosine), and K+(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb+(cytosine) and Cs+(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation–cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M+(C1).
Figure
?  相似文献   

11.
The vibrational spectra of vanadium oxide anions ranging from V(2)O(6)(-) to V(8)O(20)(-) are studied in the region from 555 to 1670 cm(-1) by infrared multiple photon photodissociation (IRMPD) spectroscopy. The cluster structures are assigned and structural trends identified by comparison of the experimental IRMPD spectra with simulated linear IR absorption spectra derived from density functional calculations, aided by energy calculations at higher levels of theory. Overall, the IR absorption of the V(m)O(n)(-) clusters can be grouped in three spectral regions. The transitions of (i) superoxo, (ii) vanadyl and (iii) V-O-V and V-O single bond modes are found at approximately 1100 cm(-1), 1020 to 870 cm(-1), and 950 to 580 cm(-1), respectively. A structural transition from open structures, including at least one vanadium atom forming two vanadyl bonds, to caged structures, with only one vanadyl bond per vanadium atom, is observed in-between tri- and tetravanadium oxide anions. Both the closed shell (V(2)O(5))(2,3)VO(3)(-) and open shell (V(2)O(5))(2-4)(-) anions prefer cage-like structures. The (V(2)O(5))(3,4)(-) anions have symmetry-broken minimum energy structures (C(s)) connected by low-energy transition structures of C(2v) symmetry. These double well potentials for V-O-V modes lead to IR transitions substantially red-shifted from their harmonic values. For the oxygen rich clusters, the IRMPD spectra prove the presence of a superoxo group in V(2)O(7)(-), but the absence of the expected peroxo group in V(4)O(11)(-). For V(4)O(11)(-), use of a genetic algorithm was necessary for finding a non-intuitive energy minimum structure with sufficient agreement between experiment and theory.  相似文献   

12.
The IRMPD spectra of the ESI-formed proton-bound complexes of the R,R,R,R- and S,S,S,S-enantiomers of a bis(diamido)-bridged basket resorcin[4]arene (R and S) with cytosine (1), cytidine (2), and cytarabine (3) were measured in the region 2800-3600 cm(-1). Comparison of the IRMPD spectra with the corresponding ONIOM (B3LYP/6-31(d):UFF)-calculated absorption frequencies allowed the assessment of the vibrational modes that are responsible for the observed spectroscopic features. All of the complexes investigated, apart from [R?H?3](+), showed similar IRMPD spectra, which points to similar structural and conformational landscapes. Their IRMPD spectra agree with the formation of several isomeric structures in the ESI source, wherein the N(3)-protonated guest establishes noncovalent interactions with the host amidocarbonyl groups that are either oriented inside the host cavity or outside it between one of the bridged side-chains and the upper aromatic nucleus. The IRMPD spectrum of the [R?H?3](+) complex was clearly different from the others. This difference is attributed to the effect of intramolecular hydrogen-bonding interactions between the C(2')-OH group and the aglycone oxygen atom of the nucleosidic guest upon repulsive interactions between the same oxygen atom and the aromatic rings of the host.  相似文献   

13.
Modifications to a Paul-type quadrupole ion trap mass spectrometer providing optical access to the trapped ion cloud as well as hardware and software for coupling to a table-top IR optical parametric oscillator laser (OPO) are detailed. Critical experimental parameters for infrared multiple photon dissociation (IRMPD) on this instrument are characterized. IRMPD action spectra, collected in the hydrogen-stretching region with this instrument, complemented by spectra in the IR fingerprint region acquired at the FELIX facility, are employed to characterize the structures of the protonated forms of 2-thiouridine, [s2Urd+H]+, and 4-thiouridine, [s4Urd+H]+. The measured spectra are compared with predicted linear IR spectra calculated at the B3LYP/6-311+G(d,p) level of theory to determine the conformers populated in the experiments. This comparison indicates that thiation at the 2- or 4-positions shifts the protonation preference between the 2,4-H tautomer and 4-protonation in opposite directions versus canonical uridine, which displays a roughly equal preference for the 2,4-H tautomer and O4 protonation. As found for canonical uridine, protonation leads to a mixture of conformers exhibiting C2′-endo and C3′-endo sugar puckering with an anti nucleobase orientation being populated for both 2- and 4-thiated uridine.
Graphical Abstract ?
  相似文献   

14.
Infrared spectra of the isolated protonated flavin molecules lumichrome, lumiflavin, riboflavin (vitamin B2), and the biologically important cofactor flavin mononucleotide are measured in the fingerprint region (600–1850 cm?1) by means of IR multiple‐photon dissociation (IRMPD) spectroscopy. Using density functional theory calculations, the geometries, relative energies, and linear IR absorption spectra of several low‐energy isomers are calculated. Comparison of the calculated IR spectra with the measured IRMPD spectra reveals that the N10 substituent on the isoalloxazine ring influences the protonation site of the flavin. Lumichrome, with a hydrogen substituent, is only stable as the N1‐protonated tautomer and protonates at N5 of the pyrazine ring. The presence of the ribityl unit in riboflavin leads to protonation at N1 of the pyrimidinedione moiety, and methyl substitution in lumiflavin stabilizes the tautomer that is protonated at O2. In contrast, flavin mononucleotide exists as both the O2‐ and N1‐protonated tautomers. The frequencies and relative intensities of the two C?O stretch vibrations in protonated flavins serve as reliable indicators for their protonation site.  相似文献   

15.
采用含时量子波包理论的简单模型对5-氯尿嘧啶和尿嘧啶的共振拉曼光谱开展了强度分析拟合, 获得了1(π, π*)激发态的几何结构变化动态特征. 结果表明, 尿嘧啶1S0→1S2跃迁的动态结构特征因5-位氯原子取代而改变. 5-氯尿嘧啶的动态结构特征主要沿C5=C6伸缩振动+C6H12 弯曲振动和N3H9/N1H7弯曲振动+N1C6伸缩振动反应坐标展开, 而尿嘧啶的动态结构特征主要沿嘧啶环的伸缩振动+C5H11/C6H12/N1H7弯曲振动和C4=O10伸缩振动反应坐标展开. π和π*轨道中氯原子的pz电子参与嘧啶环的p-π共轭作用导致了在1(π, π*)激发态上5-氯尿嘧啶的振动重组能更多地配分给嘧啶环的弯曲振动模式和C5=C6伸缩振动模式. 尿嘧啶在甲醇中的激发态动态结构特征与在水中的基本一致, 但波包沿C5H11/C6H12/N1H7弯曲振动+N1C6伸缩振动(υ12)和环呼吸振动(υ17)反应坐标的运动明显增强.  相似文献   

16.
Collision-induced dissociations of protonated (18)O-labeled tetraglycines labeled separately at either the first or the second amide bond established that water loss from the backbone occurs from the N-terminal residue. Density functional theory at B3LYP/6-311++G(d,p) predicted that the low-energy [G(4) + H - H(2)O](+) product ion is an N(1)-protonated 3,5-dihydro-4H-imidazol-4-one. The ion at the lowest energy, III, is 24.8 kcal mol(-1) lower than the protonated oxazole structure, II, proposed by Bythell et al. (J. Phys. Chem A2010, 114, 5076-5082). In addition, structure III has a predicted IR spectrum that provides a better match with the published experimental IRMPD spectrum than that of structure II.  相似文献   

17.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

18.
The complexes formed by crown ethers with hydronium and ammonium cations are of key relevance for the understanding of their supramolecular behavior in protic solvents. In this work, the complexes of the 15-crown-5 (15c5) and 18-crown-6 (18c6) ethers with H?O? and NH?? and their deuterated variants are investigated under isolated conditions. The study employs infrared multiple photon dissociation (IRMPD) vibrational spectroscopy and DFT B3LYP/6-31++G(d,p) calculations for conformational assignment. The 18c6 ether provides two energetically nearby C(3v) conformations with commensurate linear O-H···O and N-H···O bonds. The 15c5 ether ring adopts partially folded asymmetric pyramidal geometries, yielding one shorter linear H bond and two longer non-linear H bonds. Remarkably, an appreciable broadening of the IRMPD vibrational bands is observed for the 15c5-H?O?/D?O? complexes. This can be interpreted as a signature for partial sharing of the proton (or deuteron) between the water and the crown ether along the linear O-H···O intermolecular H bond, which is indeed particularly short for this complex.  相似文献   

19.
Structural aspects of proton-bound dimers composed of amino acids with aliphatic side chains are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. Features in the IRMPD spectra in the 700-2,000 cm-1 range are due primarily to C=O stretching, NH2 bending, and COH bending. It was possible to distinguish between isomeric structures by comparing the experimental IRMPD spectra and those predicted using B3LYP/6-31+G(d,p). It was possible, based on the calculations and IRMPD spectra, to assign the experimental spectrum of the glycine proton-bound dimer to a structure which was slightly different from that assigned by previous spectroscopic investigations and in agreement with recent thermochemical studies. Since all proton-bound dimers studied here, composed of the different amino acids, have very similar spectra, it is expected that they also have very similar lowest-energy structures including the mixed alanine/glycine proton-bound dimer. In fact, the spectra are so similar that it would be very challenging to distinguish, for example, the glycine proton-bound dimer from the alanine or valine proton-bound dimers in the 700-2,000 cm-1 range. According to the calculated IR spectra it is shown that in the approximately 2,000-3,200 cm-1 range differentiating between different structures as well as different proton-bound dimers may be possible. This is due mainly to differences in the asymmetric stretch of the binding proton which is predicted to occur in this region.  相似文献   

20.
The gas-phase structures of deprotonated, protonated, and sodium-cationized complexes of diethyl phosphate (DEP) including [DEP − H], [DEP + H]+, [DEP + Na]+, and [DEP − H + 2Na]+ are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy using tunable IR radiation generated by a free electron laser, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) with an electrospray ionization (ESI) source, and theoretical electronic structure calculations. Measured IRMPD spectra are compared to linear IR spectra calculated at the B3LYP/6-31G(d,p) level of theory to identify the structures accessed in the experimental studies. For comparison, theoretical studies of neutral complexes are also performed. These experiments and calculations suggest that specific geometric changes occur upon the binding of protons and/or sodium cations, including changes correlating to nucleic acid backbone geometry, specifically P–O bond lengths and ∠OPO bond angles. Information from these observations may be used to gain insight into the structures of more complex systems, such as nucleotides and solvated nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号