首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The finite volume element method is a discretization technique for partial differential equations, but in general case the coefficient matrix of its linear system is not symmetric, even for the self-adjoint continuous problem. In this paper we develop a kind of symmetric modified finite volume element methods both for general self-adjoint elliptic and for parabolic problems on general discretization, their coefficient matrix are symmetric. We give the optimal order energy norm error estimates. We also prove that the difference between the solutions of the finite volume element method and symmetric modified finite volume element method is a high order term.  相似文献   

2.

Computable a posteriori error bounds and related adaptive mesh-refining algorithms are provided for the numerical treatment of monotone stationary flow problems with a quite general class of conforming and nonconforming finite element methods. A refined residual-based error estimate generalises the works of Verfürth; Dari, Duran and Padra; Bao and Barrett. As a consequence, reliable and efficient averaging estimates can be established on unstructured grids. The symmetric formulation of the incompressible flow problem models certain nonNewtonian flow problems and the Stokes problem with mixed boundary conditions. A Helmholtz decomposition avoids any regularity or saturation assumption in the mathematical error analysis. Numerical experiments for the partly nonconforming method analysed by Kouhia and Stenberg indicate efficiency of related adaptive mesh-refining algorithms.

  相似文献   


3.
We study a few classes of Hilbert space operators whose matrix representations are complex symmetric with respect to a preferred orthonormal basis. The existence of this additional symmetry has notable implications and, in particular, it explains from a unifying point of view some classical results. We explore applications of this symmetry to Jordan canonical models, self-adjoint extensions of symmetric operators, rank-one unitary perturbations of the compressed shift, Darlington synthesis and matrix-valued inner functions, and free bounded analytic interpolation in the disk.

  相似文献   


4.

This paper gives some global and uniform convergence estimates for a class of subspace correction (based on space decomposition) iterative methods applied to some unconstrained convex optimization problems. Some multigrid and domain decomposition methods are also discussed as special examples for solving some nonlinear elliptic boundary value problems.

  相似文献   


5.
In this paper we study boundary element methods for initial-Neumann problems for the heat equation. Error estimates for some fully discrete methods are established. Numerical examples are presented.

  相似文献   


6.
We provide a different perspective of the spectral division methods for block generalized Schur decompositions of matrix pairs. The new approach exposes more algebraic structures of the successive matrix pairs in the spectral division iterations and reveals some potential computational difficulties. We present modified algorithms to reduce the arithmetic cost by nearly 50%, remove inconsistency in spectral subspace extraction from different sides (left and right), and improve the accuracy of subspaces. In application problems that only require a single-sided deflating subspace, our algorithms can be used to obtain a posteriori estimates on the backward accuracy of the computed subspaces with little extra cost.

  相似文献   


7.

We study the problem about the very ampleness of the canonical line bundle of compact locally Hermitian symmetric manifolds of non-compact type. In particular, we show that any sufficiently large unramified covering of such manifolds has very ample canonical line bundle, and give estimates on the size of the covering manifold, which is itself a locally Hermitian symmetric manifold, in terms of geometric data such as injectivity radius or degree of coverings.

  相似文献   


8.
We present a general framework for the finite volume or covolume schemes developed for second order elliptic problems in mixed form, i.e., written as first order systems. We connect these schemes to standard mixed finite element methods via a one-to-one transfer operator between trial and test spaces. In the nonsymmetric case (convection-diffusion equation) we show one-half order convergence rate for the flux variable which is approximated either by the lowest order Raviart-Thomas space or by its image in the space of discontinuous piecewise constants. In the symmetric case (diffusion equation) a first order convergence rate is obtained for both the state variable (e.g., concentration) and its flux. Numerical experiments are included.

  相似文献   


9.
The class of Nevanlinna functions consists of functions which are holomorphic off the real axis, which are symmetric with respect to the real axis, and whose imaginary part is nonnegative in the upper halfplane. The Kac subclass of Nevanlinna functions is defined by an integrability condition on the imaginary part. In this note a further subclass of these Kac functions is introduced. It involves an integrability condition on the modulus of the Nevanlinna functions (instead of the imaginary part). The characteristic properties of this class are investigated. The definition of the new class is motivated by the fact that the Titchmarsh-Weyl coefficients of various classes of Sturm-Liouville problems (under mild conditions on the coefficients) actually belong to this class.

  相似文献   


10.
The conjugate gradient boundary iteration (CGBI) is a domain decomposition method for symmetric elliptic problems on domains with large aspect ratio. High efficiency is reached by the construction of preconditioners that are acting only on the subdomain interfaces. The theoretical derivation of the method and some numerical results revealing a convergence rate of 0.04-0.1 per iteration step are given in this article. For the solution of the local subdomain problems, both finite element (FE) and spectral Chebyshev methods are considered.

  相似文献   


11.
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show that the dependence of the pointwise errors in both the scalar and vector variables on the derivative of the solution is mostly local in character or conversely that the global dependence of the pointwise errors is weak. This localization is more pronounced for higher order elements. Our estimates indicate that localization occurs except when the lowest order Brezzi-Douglas-Marini elements are used, and we provide computational examples showing that the error is indeed not localized when these elements are employed.

  相似文献   


12.
In this paper, we study the stability of symmetric collocation methods for boundary value problems using certain positive definite kernels. We derive lower bounds on the smallest eigenvalue of the associated collocation matrix in terms of the separation distance. Comparing these bounds to the well-known error estimates shows that another trade-off appears, which is significantly worse than the one known from classical interpolation. Finally, we show how this new trade-off can be overcome as well as how the collocation matrix can be stabilized by smoothing. AMS subject classification (2000)  65N12, 65N15, 65N35  相似文献   

13.
We study infinitesimal properties of nonsmooth (nondifferentiable) functions on smooth manifolds. The eigenvalue function of a matrix on the manifold of symmetric matrices gives a natural example of such a nonsmooth function.

A subdifferential calculus for lower semicontinuous functions is developed here for studying constrained optimization problems, nonclassical problems of calculus of variations, and generalized solutions of first-order partial differential equations on manifolds. We also establish criteria for monotonicity and invariance of functions and sets with respect to solutions of differential inclusions.

  相似文献   


14.
We prove that Neumann, Dirichlet and regularity problems for divergence form elliptic equations in the half-space are well posed in L2 for small complex L perturbations of a coefficient matrix which is either real symmetric, of block form or constant. All matrices are assumed to be independent of the transversal coordinate. We solve the Neumann, Dirichlet and regularity problems through a new boundary operator method which makes use of operators in the functional calculus of an underlaying first order Dirac type operator. We establish quadratic estimates for this Dirac operator, which implies that the associated Hardy projection operators are bounded and depend continuously on the coefficient matrix. We also prove that certain transmission problems for k-forms are well posed for small perturbations of block matrices.  相似文献   

15.
After studying Gaussian type quadrature formulae with mixed boundary conditions, we suggest a fast algorithm for computing their nodes and weights. It is shown that the latter are computed in the same manner as in the theory of the classical Gauss quadrature formulae. In fact, all nodes and weights are again computed as eigenvalues and eigenvectors of a real symmetric tridiagonal matrix. Hence, we can adapt existing procedures for generating such quadrature formulae. Comparative results with various methods now in use are given. In the second part of this paper, new algorithms for spectral approximations for second-order elliptic problems are derived. The key to the efficiency of our algorithms is to find an appropriate spectral approximation by using the most accurate quadrature formula, which takes the boundary conditions into account in such a way that the resulting discrete system has a diagonal mass matrix. Hence, our algorithms can be used to introduce explicit resolutions for the time-dependent problems. This is the so-called lumped mass method. The performance of the approach is illustrated with several numerical examples in one and two space dimensions.

  相似文献   


16.
It is shown that every symmetric convex body which satisfies a kind of weak law of large numbers has the property that almost all its marginal distributions are approximately Gaussian. Several quite broad classes of bodies are shown to satisfy the condition.

  相似文献   


17.
We present spectral methods for solving the Stokes problem in a circular domain. Their main feature is the uniform inf-sup condition, which allows for optimal error estimates. We apply them to the resolution of exterior problems by coupling with the transparent boundary condition.

  相似文献   


18.
A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix representation for fully symmetric infinitesimal flexes, and fully symmetric stresses of symmetric frameworks. The orbit matrix is a true analog of the standard rigidity matrix for general frameworks, and its analysis gives important insights into questions about the flexibility and rigidity of classes of symmetric frameworks, in all dimensions.  相似文献   

19.
Here we obtain various results on the class of axially symmetric harmonic maps from B 3 to S 2. We find some new classes of non-minimizing harmonic maps exhibiting unusual singular behavior. Optimal partial regularity estimates are obtained for mappings which minimize, among axially symmetric maps, various relaxed energies which have been studied in [4]and [11].  相似文献   

20.
The paper presents convergence estimates for a class of iterative methods for solving partial generalized symmetric eigenvalue problems whereby a sequence of subspaces containing approximations to eigenvectors is generated by combining the Rayleigh-Ritz and the preconditioned steepest descent/ascent methods. The paper uses a novel approach of studying the convergence of groups of eigenvalues, rather than individual ones, to obtain new convergence estimates for this class of methods that are cluster robust, i.e. do not involve distances between computed eigenvalues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号