首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium are considered. We apply Lie-group method for determining symmetry reductions of partial differential equations. Lie-group method starts out with a general infinitesimal group of transformations under which the given partial differential equations are invariant. The determining equations are a set of linear differential equations, the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group has been determined, a solution to the given partial differential equations may be found from the invariant surface condition such that its solution leads to similarity variables that reduce the number of independent variables of the system. The effect of the velocity parameter λ, which is the ratio of the external free stream velocity to the stretching surface velocity, permeability parameter of the porous medium k 1, and Prandtl number Pr on the horizontal and transverse velocities, temperature profiles, surface heat flux and the wall shear stress, has been studied.  相似文献   

2.
We propose a two-fluid theory to model a dilute polymer solution assuming that it consists of two phases, polymer and solvent, with two distinct macroscopic velocities. The solvent phase velocity is governed by the macroscopic Navier–Stokes equations with the addition of a force term describing the interaction between the two phases. The polymer phase is described on the mesoscopic level using a dumbbell model and its macroscopic velocity is obtained through averaging. We start by writing down the full phase-space distribution function for the dumbbells and then obtain the inertialess limits for the Fokker–Planck equation and for the averaged friction force acting between the phases from a rigorous asymptotic analysis. The resulting equations are relevant to the modelling of strongly non-homogeneous flows, while the standard kinetic model is recovered in the locally homogeneous case.  相似文献   

3.
This article presents a new theory for flow in porous media of a mixture of nonreacting chemical components. In the examples considered, these components are hydrocarbons and water. The model presented assumes that porosity is constant and uniform, and that the wetting properties of the medium are nearly neutral. The flow equations are obtained by starting with the balance equations (mass, momentum, and energy) at pore level, and averaging them over a large number of pores, using the diffuse interface assumption then the methods of irreversible thermodynamics, thus obtaining, among other things, the collective convective velocity and the component-wise diffusive velocities as functions of the component densities. When the simplification of uniform temperature is introduced, the flow equations are of the Cahn–Hilliard type (with an extra term accounting for gravitation) where the thermodynamic function is the Helmholtz free energy per unit volume of the mixture. There are no relative permeabilities. Also, the set of equations is complete in the sense that no flash calculations are necessary, phase segregation being part of the calculation. The numerical examples considered are: (i) phase segregation in a gravitational field and (ii) coning where the initial state is fully segregated.  相似文献   

4.
A linear isothermal dynamic model for a porous medium saturated by a Newtonian fluid is developed in the paper. In contrast to the mixture theory, the assumption of phase separation is avoided by introducing a single constitutive energy function for the porous medium. An important advantage of the proposed model is it can account for the couplings between the solid skeleton and the pore fluid. The mass and momentum balance equations are obtained according to the generalized mixture theory. Constitutive relations for the stress, the pore pressure are derived from the total free energy accounting for inter-phase interaction. In order to describe the momentum interaction between the fluid and the solid, a frequency independent Biot-type drag force model is introduced. A temporal variable porosity model with relaxation accounting for additional attenuation is introduced for the first time. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be estimated from directly measurable phenomenological parameters. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for the two P waves and one S wave are calculated. The influences of the porosity relaxation coefficient on the velocities and attenuation coefficients of the three waves of the porous medium are discussed in a numerical example.  相似文献   

5.
A linear isothermal dynamic model for a porous medium saturated by two immiscible fluids is developed in the paper. In contrast to the mixture theory, phase separation is avoided by introducing one energy for the porous medium. It is an important advantage of the model based on one energy approach that it can account for the couplings between the phases. The volume fraction of each phase is characterized by the porosity of the porous medium and the saturation of the wetting phase. The mass and momentum balance equations are constructed according to the generalized mixture theory. Constitutive relations for the stress, pore pressure are derived from the free energy function. A capillary pressure relaxation model characterizing one attenuation mechanism of the two-fluid saturated porous medium is introduced under the constraint of the entropy inequality. In order to describe the momentum interaction between the fluids and the solid, a frequency independent drag force model is introduced. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be calculated by the phenomenological parameters, which are measurable. The equations of motion in the frequency domain are obtained in terms of the Fourier transformation. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for three P waves and one S wave are calculated. The influences of the capillary pressure relaxation coefficient and the saturation of the wetting phase on the velocities and attenuation coefficients for the four wave modes are discussed in the numerical examples.  相似文献   

6.
We present a numerical analysis of the stochastic population balance (SPB) theory for foam motion in porous media. The theory condenses into a set of non-linear partial differential equations in the saturation, pressure, and bubble density. We solve the equations using the IMPES method and perform sensitivity and parametric analysis. Finally, we compare the saturation profiles obtained numerically with those obtained from CT scan foam experiments. The agreement between the theory and experiments confirms that the stochastic population balance model describes adequately foam dynamics in porous media.  相似文献   

7.
The flow of an incompressible Newtonian fluid confined in a planar geometry with different wall temperatures filled with a homogenous and isotropic porous medium is analyzed in terms of determining the unsteady state and steady state velocities, the temperature and the entropy generation rate as function of the pressure drop, the Darcy number, and the Brinkman number. The one-dimensional approximate equation in the rectangular Cartesian coordinates governing the flow of a Newtonian fluid through porous medium is derived by accounting for the order of magnitude of terms as well as accompanying approximations to the full-blown three-dimensional equations by using scaling arguments. The one-dimensional approximate energy and the entropy equations with the viscous dissipation consisting of the velocity gradient and the square of velocity are derived by following the same procedure used in the derivation of velocity expressions. The one-dimensional approximate equations for the velocity, the temperature, and the entropy generation rate are analytically solved to determine the velocity, the temperature, and the entropy distributions in the saturated porous medium as functions of the effective process parameters. It is found that the pressure drop, the Darcy number, and the Brinkman number affect the temperature distribution in the similar way, and besides the above parameters, the irreversibility distribution ratio also affects the entropy generation rate in the similar way.  相似文献   

8.
Shock waves in saturated thermoelastic porous media   总被引:1,自引:0,他引:1  
The objective of this paper is to develop and present the macroscopic motion equations for the fluid and the solid matrix, in the case of a saturated porous medium, in the form of coupled, nonlinear wave equations for the fluid and solid velocities. The nonlinearity in the equations enables the generation of shock waves. The complete set of equations required for determining phase velocities in the case of a thermoelastic solid matrix, includes also the energy balance equation for the porous medium as a whole, as well as mass balance equations for the two phase. In the special case of a rigid solid matrix, the wave after an abrupt change in pressure propagates only through the fluid.  相似文献   

9.
10.
A generalization of the Navier-Stokes equation is developed to include laminar flow through a rigid isotropic granular porous medium of spatially varying permeability. The model is based on a theory of interspersed continua and the mean geometrical properties of an idealized granular porous microstructure. The derived momentum transport equations are applicable to granular porous media over the entire porosity range from zero through unity. No restriction with respect to flow velocity is imposed, except for the assumption of laminar flow within the pores. The results provide useful and versatile equations and substantiate many of the empirical equations currently in use. One of the major advantages of the generalized momentum equation is its adaptability to numerical simulation.  相似文献   

11.
常军  许金泉 《力学学报》2005,37(2):249-256
基于弹性动力学的线性理论,建立了涂层材料中广义瑞利波传播的理论分析模型,并 且由波动方程和边界条件推导了波的频散方程.分析了慢层和快层对相速度频散的影响,给 出了不同层厚-波长比和不同涂层-基体密度比情况下广义瑞利波相速度的理论解.算例分 析分别比较了慢层和快层结构中波的相速度、群速度,以及随深度衰减的位移与应力振 幅.另外,相速度曲线和位移振幅曲线与文献中给出的结果吻合,验证了理论模型和分析过 程的正确性.  相似文献   

12.
We investigated the effects of microstructure statistics on the speed and attenuation of an elastic wave propagating through a porous material. We derived a general set of equations from which the effective wavenumber (and hence the phase velocity, group velocity and attenuation) can be found, depending on the level of statistical information known. We solved this equation in the independent scatterer approximation and computed the effective wavenumber for several distribution of pore radii. We found the effective wavenumber to be most sensitive to the most probable pore radius and more sensitive to radii larger than this value than to those smaller.  相似文献   

13.
Time harmonic waves in a swelling porous elastic medium of infinite extent and consisting of solid, liquid and gas phases have been studied. Employing Eringen’s theory of swelling porous media, it has been shown that there exist three dilatational and two shear waves propagating with distinct velocities. The velocities of these waves are found to be frequency dependent and complex valued, showing that the waves are attenuating in nature. Here, the appearance of an additional shear wave is new and arises due to swelling phenomena of the medium, which disappears in the absence of swelling. The reflection phenomenon of an incident dilatational wave from a stress-free plane boundary of a porous elastic half-space has been investigated for two types of boundary surfaces: (i) surface having open pores and (ii) surface having sealed pores. Using appropriate boundary conditions for these boundary surfaces, the equations giving the reflection coefficients corresponding to various reflected waves are presented. Numerical computations are performed for a specific model consisting of sandstone, water and carbon dioxide as solid, liquid and gas phases, respectively, of the porous medium. The variations of phase speeds and their corresponding attenuation coefficients are depicted against frequency parameter for all the existing waves. The variations of reflection coefficients and corresponding energy ratios against the angle of incidence are also computed and depicted graphically. It has been shown that in a limiting case, Eringen’s theory of swelling porous media reduces to Tuncay and Corapcioglu theory of porous media containing two immiscible fluids. The various numerical results under these two theories have been compared graphically.  相似文献   

14.
According to generalized characteristic theory, a characteristic analysis for stress wave propagation in transversely isotropic fluid-saturated porous media was performed. The characteristic differential equations and compatibility relations along bicharacteristics were deduced and the analytical expressions for wave surfaces were obtained. The characteristic and shapes of the velocity surfaces and wave surfaces in the transversely isotropic fluid-saturated porous media were discussed in detail. The results also show that the characteristic equations for stress waves in pure solids are particular cases of the characteristic equations for fluid-saturated porous media.  相似文献   

15.
A mixture theory is developed for multi-component micropolar porous media with a combination of the hybrid mixture theory and the micropolar continuum theory. The system is modeled as multi-component micropolar elastic solids saturated with multi- component micropolar viscous fluids. Balance equations are given through the mixture theory. Constitutive equations are developed based on the second law of thermodynamics and constitutive assumptions. Taking account of compressibility of solid phases, the volume fraction of fluid as an independent state variable is introduced in the free energy function, and the dynamic compatibility condition is obtained to restrict the change of pressure difference on the solid-fluid interface. The constructed constitutive equations are used to close the field equations. The linear field equations are obtained using a linearization procedure, and the micropolar thermo-hydro-mechanical component transport model is established. This model can be applied to practical problems, such as contaminant, drug, and pesticide transport. When the proposed model is supposed to be porous media, and both fluid and solid are single-component, it will almost agree with Eringen's model.  相似文献   

16.
High velocity flow in porous media   总被引:2,自引:0,他引:2  
  相似文献   

17.
Open-cell metal foam is distinguished from traditional porous media by its very high porosities (often greater than 90 %), and its web-like open structure and good permeability. As such, the foam is a very attractive core for many engineered systems, e.g., heat exchangers, filtration devices, catalysts, and reactors. The flow field inside the foam is rather complex due to flow reversal and vigorous mixing. This complexity is increased by the possible presence of an entry region. The entrance region in metal foam is usually underestimated and ignored, just like its counterpart in traditional porous media. In this paper, the actual entry length is determined by simulation and direct experiment on commercial open-cell aluminum foam. It is shown to be dependent on flow velocity and to reach a constant value for higher velocities. The complex and intrinsically random architecture of the foam is idealized using a unit geometrical model, in order to numerically investigate the flow field and pressure drop inside the foam. The Navier–Stokes equations are solved directly, and velocity and pressure fields are obtained for various approach velocities using a commercial numerical package. The entry length is ascertained from the behavior of the velocity field close to the entrance. Comparisons to experimental data were also carried out. The commercial foam that was used in the experiment had 10 ppi and porosity of 91.2 %. Air was forced to flow inside the foam using an open-loop wind tunnel. Good qualitative agreement between the modeling and experimental results are obtained. The agreement lends confidence to the modeling approach and the determined entry length.  相似文献   

18.
19.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

20.
A Lagrangian approach for the coupled numerical simulation of fixed net structures and fluid flow is derived. The model is based on solving the Reynolds-averaged Navier–Stokes equations in a Eulerian fluid domain. The equations include disturbances to account for the presence of the net. For this purpose, forces on the net are calculated using a screen force model and are distributed on Lagrangian points to represent the geometry of the net. In comparison to previous approaches based on porous media representations, the new model includes a more physical derivation and simplifies the necessary numerical procedure. Hence, it is also suitable for arbitrary geometries and large scale simulations. An extensive validation section provides insight into the performance of the new model. It includes the simulation of steady currents through single and multiple fixed net panels and cages, and wave propagation through a net panel. Different solidities, inflow velocities and angles of attack are considered. The comparison of loads on and velocity reductions behind the net with available measurements indicates superior performance of the proposed model over existing approaches for a wide range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号