首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用原位芳基重氮化反应对碳纳米管进行苯磺酸功能化, 进而制备了聚吡咯/苯磺酸化碳纳米管复合材料(PPy/f-MWCNTs), 通过透射电镜(TEM)及扫描电镜(SEM)测试发现, 氢键诱导使聚吡咯成功地包覆在碳纳米管表面. 循环伏安和恒流充放电测试结果表明, 复合材料具有良好的电化学电容性能, 当聚吡咯与苯磺酸化碳纳米管质量比为1:1时, 复合材料在1.0 A·g-1的电流密度下的比容量达266 F·g-1, 而且聚吡咯利用率比未功能化聚吡咯/碳纳米管(PPy/p-MWCNTs)和纯聚吡咯(PPy)提高了1倍以上.  相似文献   

2.
以空心介孔硅球为模板,酚醛树脂乙醇溶液为碳源制得了分级多孔碳(HPCs).以酸化处理后的HPCs为载体、对甲苯磺酸(p-TSA)为掺杂剂、三氯化铁(FeCl3)为氧化剂,通过原位化学氧化聚合法制备了聚吡咯-分级多孔碳(PPy-HPCs)纳米复合材料.采用场发射扫描电镜(FESEM)、透射电镜(TEM)、傅里叶红外光谱仪(FT IR)、恒流充放电、循环伏安以及交流阻抗等测试技术对复合材料进行了形貌结构和电化学性能的研究.结果表明:聚吡咯成功地包覆在HPCs的表面,随着聚吡咯含量的增加,复合材料的比容量呈现先增大后减小的趋势.当聚吡咯的质量含量为34.9%时,复合材料在电流密度为0.1 A/g时达到最大比容量(316 F/g),在1 A/g的电流密度下循环1 000次后,比容量保持率为95.8%,聚吡咯的引入有效地提高了HPCs电极材料的电化学性能.  相似文献   

3.
通过将吡咯单体在低温下与石墨烯量子点进行原位聚合,获得一种全新的聚吡咯/石墨烯量子点(PPY/GQD)复合材料.实验中采用了扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射(XRD)、红外光谱(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.结果表明,吡咯单体以石墨烯量子点为软模板,以化学键的方式在石墨烯量子点的表面聚合生长成片状聚吡咯.通过机械冷压法将粉末状PPY/GQD复合物压成圆片电极.电极的电化学测试结果表明,PPY和GQD质量比为50:1所制得的复合物的电容量为485 F.g-1,同时在2000次循环之后电容量只降低了大约2%.通过与同比例的PG(聚吡咯/石墨烯复合材料)以及纯PPY对比,发现聚吡咯/石墨烯量子点的高比容量及优异的循环稳定性将会使其在电化学超级电容器领域中具有潜在的应用价值.  相似文献   

4.
通过将吡咯单体在低温下与氧化石墨烯进行原位聚合,获得聚吡咯/石墨烯(Ppy/CRGO)复合材料.采用场发射电子显微镜(FESEM)、红外(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.FESEM结果表明,通过控制氧化石墨烯(GO)和吡咯单体的质量比例,可以对复合物的层状和厚度进行调控.FT-IR和TGA结果表明,聚吡咯(Ppy)是通过化学键合的方式与氧化石墨烯复合在一起.通过机械冷压法将粉末状Ppy/CRGO复合物压成圆片电极,并探讨了石墨烯和聚吡咯复合比例、反应时间、烘干温度和孔隙率等因素对Ppy/CRGO复合物电极的电学和电化学性能的影响.结果表明,Ppy与CRGO质量比为10∶1所制得的Ppy/CRGO复合物的电容量为421 F·g-1,通过在电极中引入孔隙,电容量能进一步提升为509 F·g-1.  相似文献   

5.
用恒电流法分别聚合了掺杂对甲苯磺酸根(pTS-)和十二烷基磺酸根(DS-)的聚吡咯膜(PPy/pTS和PPy/DS),通过循环伏安法(CV)和电化学阻抗法(EIS)测试了聚吡咯膜在NaCl溶液中‘过电位’电化学过程前后及不同电位下聚吡咯膜的电化学性能.同时,通过嵌入和脱出Na+和Cl-离子的聚吡咯膜在特定溶液中电化学阻抗图谱,研究了离子的嵌入对聚吡咯膜电化学性能的影响.结果表明‘过电位’现象可以提高聚吡咯膜的离子电导率和膜电容,Cl-离子的嵌入能提高PPy/pTS的电导率,而Na+离子的嵌入对聚吡咯膜的电导率影响不大.另外,嵌入离子对聚吡咯膜形貌的改变会对聚吡咯膜的离子传导率有一定影响,从而导致膜的电化学阻抗的变化.  相似文献   

6.
采用界面聚合法制备聚3,4-乙撑二氧噻吩/二氧化锰(PEDOT/MnO2)纳米复合物. 通过红外(IR)光谱、X射线衍射(XRD)、BET比表面积、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品进行表征. 结果表明, 产物是具有丰富的多孔孔道结构的无定型纳米材料, 孔径主要分布在5-25 nm范围内, 比表面积可达98 m2·g-1. 同时用循环伏安(CV)、恒流充放电和交流阻抗(EIS)等电化学测试表明, 在0.5 mol·L-1 Na2SO4溶液中, -0.2 - 0.8 V(vs SCE)的电化学窗口下, PEDOT/MnO2纳米复合物显示出良好的电化学性能, 当电流密度为0.5 A·g-1时, 所制备的PEDOT/MnO2单电极比容量达196.3 F·g-1, 500次循环后样品放电比容量保持90%左右.  相似文献   

7.
采用恒电流法制备了具有可快速充放电性能的对甲基苯磺酸根(TOS-)掺杂聚吡咯/功能化单壁碳纳米管(PPy-TOS/F-SWNTs)复合材料,扫描电镜(SEM)结果表明该复合材料呈纳米棒状构成的多孔结构,棒径约为70nm;比表面积(BET)测试分析表明该复合材料有着较高的比表面积(12.64m2.g-1)和大的介孔孔隙率(20-40nm).循环伏安(CV)、电化学阻抗谱(EIS)和恒电流充放电(GC)电化学分析表明该材料具有优异的快速充放电性能,在800mV的电位窗和2.5A.g-1(功率密度为2kW.kg-1)的电流密度下该材料具有211F.g-1的比容量(能量密度为18.7Wh.kg-1),而当充放电电流高达80A.g-1(功率密度为60kW.kg-1)时比容量仍可达141.8F.g-1(能量密度为12.6Wh.kg-1),同时该材料还表现出优异的稳定性,在10A.g-1大电流下经历10000圈循环后容量仍保持95.2%.  相似文献   

8.
在水溶液中以表面活性剂F127形成的胶束为模板制备聚吡咯纳米球,考察了温度、吡咯浓度、pH等因素对聚吡咯纳米球形貌的影响,提出F127体系中聚吡咯纳米球的形成机理。利用聚吡咯与氯金酸之间的氧化还原活性,在聚吡咯纳米球表面成功负载金纳米粒子,研究温度和吡咯浓度对聚吡咯/金复合材料形貌的影响,运用透射电子显微镜、傅里叶红外光谱、X射线衍射、拉曼光谱、循环伏安等对其形貌、结构、性能进行研究。结果表明,所制得的负载金纳米粒子的聚吡咯复合材料具有明显的拉曼增强效应,可用于分析复合材料中聚合物的分子结构;此外该复合材料在酸性条件下具有较好的电化学稳定性,可应用于修饰电极。  相似文献   

9.
在水溶液中采用一步法在聚吡咯纳米球表面负载二氧化锰纳米片,得到聚吡咯/二氧化锰复合材料,运用透射电子显微镜、傅里叶红外光谱和X射线衍射对其形貌和结构进行表征,并对其电化学性能进行研究。结果表明,所制备的复合材料具有理想的电化学性能,在超级电容器领域有很大的发展潜力。  相似文献   

10.
电化学混合电容器用新型聚吡咯/介孔碳纳米复合电极   总被引:1,自引:0,他引:1  
采用介孔碳CMK-3作为载体,通过化学原位聚合的方法制备出一种新型的聚吡咯/介孔碳(PPy-CMK-3)纳米复合材料.将该纳米复合材料作为正极,配以介孔碳CMK-3为负极和1.0mol·L-1NaNO3中性电解液,组装成为电化学混合电容器.电化学测试表明:在5.0mA·cm-2电流密度和1.4V充放电电位条件下,其放电比容量达57F·g-1,电容器功率密度为2.5×102W·kg-1,能量密度达17Wh·kg-1.当电流密度从5.0mA·cm-2增加至50mA·cm-2时,电容器的容量保持率在80%以上,显示高倍率充放电特性优异.此外,聚吡咯-介孔碳/介孔碳电化学混合电容器易活化,并具有优异的充放电效率和良好的循环稳定性能.  相似文献   

11.
采用磷酸阳极氧化法在金属镍表面形成阳极氧化复合膜,在1 mol·L-1氢氧化钾溶液中进行大电流密度恒流充放电(GCD)处理, 使基体表面形成一层多孔纳米花瓣状膜. 采用扫描电镜(SEM), X射线光电子能谱(XPS), X射线衍射(XRD)仪, 对膜的形貌、组成和结构进行了表征, 使用电化学工作站、电池寿命测试仪对该膜的电容特性进行了测试. 结果表明, 所制氧化膜由三维多孔纳米花瓣状的NiO、α-Ni(OH)2和β-Ni(OH)2构成, 该膜具有优异的电容特性, 其在电流密度为6.7 A·g-1时,比电容量达1509 F·g-1, 而当电流密度为66.7 A·g-1时,比电容量为1120 F·g-1 (为6.7A·g-1时的74%).在电流密度为66.7 A·g-1时, 经过2000次循环测试后比电容量基本保持不变.  相似文献   

12.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

13.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

14.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

15.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料.采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究.结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite型晶体结构;复合物中MnO2的含量约为34%(w).在100°C制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变.以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1Na2SO4溶液为电解液组装成IPC/MnO2//AC混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

16.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

17.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

18.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

19.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

20.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号