首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a kind of natural protein, wool keratin was used to improve the cell affinity of poly(l-lactic acid) (PLLA). After small keratin particles were prepared from keratin solution by spray-drying process, they were blended with PLLA solution. PLLA/keratin nonwoven fibrous membrane was produced by electrospinning the blend solutions. The release rate of keratin from the composite membrane was detected by Fourier transform infrared (FTIR) after PLLA/keratin membranes were degraded in PBS up to 4 weeks. The chemical compositions of the PLLA/keratin surface were examined by X-ray photoelectron spectroscope. Although more than half of the keratin was removed from PLLA/keratin membrane during the first few hours of degradation, some keratin particles were still embedded in the PLLA fibers. Osteoblast cells were used to evaluate the cellular behaviors of the composite membrane. After 7 days culturing, more cells were observed on PLLA/keratin membranes than on pure PLLA membranes. MTT assay and alkaline phosphatase (ALP) activity results suggested that keratin could improve the interactions between osteoblast cells and the polymeric membranes.  相似文献   

2.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/poly(ethylene glycol)(PEG) fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and in vitro degradation behaviors were investigated. With increasing the content of PEG, the PLLA/PCL/PEG blend fibers become thinner due to the increment in solution conductivity and decrease in solution viscosity. The thermal stability, hydrophilic properties, the tensile strength and elongation-at-break of PLLA/PCL/PEG blend fibrous membranes were improved, but porosity were decreased with the content of PEG changing from 10 wt% to 30 wt%. Furthermore, the incorporation of PEG enhanced the degradation of the PLLA/PCL/PEG fibrous membranes due to the better hydrophilic properties. In addition, the PLLA/PCL/PEG fibrous membranes have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

3.
利用浸沉凝胶相转化法制备医用聚氨酯(BPU)/聚乳酸(PLLA)微孔膜,讨论了BPU/PLLA不同配比时聚合物/1,4-二氧六环/水三元体系的凝胶特性及其对共混膜结构和性能的影响,并初步探讨成膜机理.研究结果表明,随着BPU/PLLA质量比例由90/10变为75/25、50/50、25/75、10/90,聚合物/溶剂/非溶剂三元体系的热力学稳定性增强,凝胶值增大,但是共混溶液的黏度增大;并且,共混膜的孔隙率、膜厚、平均孔径、水蒸汽透过速率及吸水率先增加后降低.这主要是由于随着BPU/PLLA质量比例的变化,动力学扩散过程控制成膜速度转变为成膜体系热力学性质控制成膜速度;成膜过程由延时分相转变为瞬时分相,后又转变为延时分相.  相似文献   

4.
Stereoblock poly(lactic acid) (sb-PLA) is incorporated into a 1:1 polymer blend system of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) that has a high molecular weight to study its addition effect on the stereocomplex (sc) formation of PLLA and PDLA. The ternary polymer blend films are first prepared by casting polymer solutions of sb-PLA, PLLA, and PDLA with different compositions. Upon increasing the content of sb-PLA in the blend films the sc crystallization is driven to a higher degree, while the formation of homo-chiral (hc) crystals is decreased. Lowering the molecular weight of the incorporated sb-PLA effectively increases the sc formation. Consequently, it is revealed that sb-PLA can work as a compatibilizer to improve the poor sc formation in the polymer blend of PLLA and PDLA.  相似文献   

5.
采用熔融共混方法制备了聚左旋乳酸(PLLA)和超高分子量聚氧化乙烯(PEO)共混物, 通过差示扫描量热(DSC)、 扫描电子显微镜(SEM)和二维广角X射线散射(2D-WAXS)等方法系统研究了PEO的加入对不同温度下PLLA拉伸行为及拉伸过程中微观结构变化的影响. 结果表明, PLLA/PEO共混物为非均相体系, PEO粒子均匀分布在PLLA中形成两相结构. PEO的加入能够显著降低PLLA的玻璃化转变温度(Tg), 在25~60 ℃范围内显著提高PLLA的拉伸性能. 在60 ℃拉伸时, PEO的加入提高了PLLA在拉伸过程中的结晶和形变能力. 在80 ℃拉伸时, 共混物的拉伸断裂伸长率下降, 但共混物的结晶速度仍高于纯PLLA样品.  相似文献   

6.
Poly(l-lactide) (PLLA) was melt-blended with poly(p-vinyl phenol) (PVPh) using a two-roll mill, and the miscibility between PLLA and PVPh and degradation of the blend films were investigated. It was found that PLLA/PVPh blend has miscibility in the amorphous state because only single Tg was observed in the DSC and DMA measurements. The Tg of the PLLA/PVPh blend could be controlled in the temperature range from 55 °C to 117 °C by changing the PVPh weight fraction. In alkaline solution, degradation rate of PLLA/PVPh blends was faster than that of neat PLLA because PVPh could dissolve in alkaline solution. The surface morphology of degraded PLLA and PLLA/PVPh blend were observed by SEM. The surface morphology of degraded PLLA/PVPh blend was finer than that of PLLA. Young's modulus of PLLA/PVPh blend increased with increasing PVPh content. Yield stress of PLLA/PVPh blends whose PVPh content was less than 30 wt% kept the level of about 55 MPa and that of PLLA/PVPh blend whose PVPh content was 40 wt% is much lower than that of neat PLLA.  相似文献   

7.
通过溶液浇铸法制备不同组分的左旋聚乳酸(PLLA)和聚(L-2-羟基-3-甲基丁酸)(PL-2H3MB)共混物。运用差示扫描量热仪(DSC)、偏光显微镜(POM)、广角X射线衍射(WAXD)和热重分析仪(TGA)分析共混物的结晶、熔融行为和热稳定性。通过观察到DSC加热曲线中新的熔融峰判断PLLA和PL-2H3MB共晶的形成,共晶显著提高PLLA起始结晶温度和WAXD曲线中特征衍射峰的变化,证实了溶液浇铸共混物中的共结晶现象。同时,共混物中PL-2H3MB和PLLA还表现出优于单组分PLLA和PL-2H3MB的热稳定性。PLLA和PL-2H3MB的共结晶行为可能为调控PLLA的热稳定性、力学性能以及降解性能提供了一种新的潜在方法。  相似文献   

8.
A binary poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) (70/30 w/w) blend and a ternary PLLA/PCL/PLLA‐PCL‐PLLA blend of the same composition which contains 4 wt.‐% of a triblock PLLA‐PCL‐PLLA copolyester as compatibilizing agent were prepared by melt mixing at 200°C. Investigation of the thermal and mechanical properties of the blends and scanning electron microscopy of their fracture surfaces showed in the case of the ternary blend a better state of dispersion of PCL in the PLLA matrix and an improved toughness.  相似文献   

9.
Blending poly(l ‐lactic‐acid) (PLLA) and thermoplastic polyurethane (TPU) has been performed in an effort to toughen PLLA without compromising its biodegradability and biocompatibility. The mixing enthalpy calculation of PLLA and TPU predicted that the blend was a thermodynamic miscible system. The viscoelastic properties and phase morphologies of PLLA/TPU blends were investigated further by dynamic mechanical analysis and scanning electron microscopy. It was found that the blend was a partially miscible system. The dynamic mechanical analysis showed that Tg of PLLA and TPU shifted toward with TPU content increasing. Scanning electron microscopy photos showed that the morphologies of the blends changed from a sea island structure to a bicontinuous structure as an increment in TPU content, which suggested that the miscibility of PLLA and TPU was enhanced when the TPU increased. PLLA/TPU blend fibers were fabricated. With the TPU content increasing from 0 wt% to 30 wt%, the tensile strength and initial modulus of blend fibers decreased first then increased, while elongation at break and fracture work gradually increased. The change of tensile properties indicated the toughening effects of TPU on PLLA fibers, also suggested that the formation of blend fibers was influenced by the blend rheological behavior other than the compatibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
李莉莉  滕红 《高分子科学》2012,30(6):916-922
PLLA/CA mixtures of different compositions were successfully electrospun to obtain composite nanofibrous membranes.The microstructures of the membrances changed from homogeneous to heterogeneous with the addition of CA, which was observed by FE-ESEM.The PLLA/CA fabric membranes were characterized by mechanical testing,DSC and contact angle measurements.The tensile stress of the composite fibrous membranes increased obviously with the increase of CA content.DSC results indicated that the CA component was the main factor for the changes of enthalpies in the composite fibers.Contact angle measurements showed the hydrophilicity of the electrospun nanofiber membranes was improved with the addition of CA.  相似文献   

11.
Porous poly(ε‐caprolactone) (PCL) films were prepared by the removal of poly(L ‐lactide) (PLLA) from phase‐separated PLLA/PCL blend films using the selective Proteinase K™‐catalyzed hydrolysis of PLLA and subsequent elution of its water‐soluble oligomers and monomer into the surrounding hydrolysis media. Polarimetry, gravimetry, and differential scanning calorimetry (DSC) confirmed the complete removal of PLLA molecules from the blend films within 5 d of the Proteinase K‐catalyzed hydrolysis and therefore the formation of porous PCL films when the initial PLLA content [XPLLA(0)(w/w) = PLLA/(PCL + PLLA)] of the blend films was in the range 0.3–0.5. The fragmentation of the blend film with XPLLA(0) = 0.7 occurred when the Proteinase K‐catalyzed hydrolysis was continued for longer than 5 d. These findings exhibited that both the PLLA‐rich and PCL‐rich phases were continuous in the blend films for XPLLA(0) ranges of 0.3–0.7 and of 0.3–0.5, respectively, and that the PCL‐rich phase became dispersed when XPLLA(0) was increased to 0.7. The dependence of enzymatic hydrolysis rate on XPLLA(0) strongly suggests that the Proteinase K‐catalyzed hydrolysis of the blend films occurs at the interfaces of PLLA‐rich and PCL‐rich phases as well as at the film surfaces.  相似文献   

12.
聚乳酸/纳米SiO_2共混物的热性能   总被引:3,自引:0,他引:3  
以两种含有不同功能团的纳米SiO2对聚左旋乳酸(PLLA)进行了共混改性,从而提高了PLLA的性能。在纳米SiO2的质量分数为0.5~5%范围内,PLLA与之是相容的,其中含有—NH2功能团的RNS型纳米对PLLA的Tg有一定的影响,加入质量分数为5%的RNS型纳米SiO2后,PLLA的Tg降至52℃。由于RNS纳米SiO2中的—NH2与PLLA分子链中的—C=O形成了弱的氢键,因此在相同质量分数下,对PLLA热稳定性的影响要高于含—CH3功能团的DNS纳米SiO2,质量分数为5%的纳米SiO2与PLLA共混后,PLLA/RNS纳米SiO2共混物的热失重起始温度为370℃,而PLLA/RNS纳米SiO2共混物的则为365℃。  相似文献   

13.
Summary: A method for rapidly determining the modulus of polymer blends was developed. A polymer blend gradient library of poly(L ‐lactic acid) (PLLA) and poly(D ,L ‐lactic acid) (PDLLA) was created in the form of a strip‐shaped film and characterized with FTIR microspectroscopy. Nanoindentation measurements were made along the gradients to obtain modulus data over a wide range of PLLA‐PDLLA blend compositions. This novel, high‐throughput approach to material characterization provides engineers with a technique to accelerate the development of materials.

Deposition of the polymer composition gradient.  相似文献   


14.
A novel polyurethane containing phosphorus and nitrogen (PU) was synthesized and characterized with 1H-NMR, FTIR, and GPC. It was served as flame retardant to blend with poly(L-lactide) (PLLA) through solution casting technique. PU particle dispersed in PLLA substrate irregularly and improved the crystallinity of PLLA. The initial decomposition temperature of PLLA composite was significantly lower, but char residue increased. Flame retardancy and mechanical properties of PU/PLLA blends were evaluated. When the blend ratio of PU/PLLA was 10 wt%, LOI was 26.8%, and UL94 test reached V-2 grade. The inflaming retarding mechanism was outlined. The tensile strength of PLLA blend was 42.8 MPa, while its elongation at break was only 2%. By adjusting PU and adding compatilizer, the balance between flame retardancy and good mechanical properties of PLLA would be controlled.  相似文献   

15.
Blending poly(butylene succinate) (PBS) with polylactide (PLLA) has proven effective in improving heat resistance of PLLA fibers. Unfortunately, it remains challenging to maintain good spinnability for PLLA/PBS blends with high content of PBS with which further improved heat resistance could be anticipated. In this study, reactive melt-extrusion was devised to in-situ generate PLLA-PBS copolymers by introducing zinc acetate as a transesterification catalyst into PLLA/PBS blends. The compatibility between the PLLA and PBS phases was greatly improved by the formation of PLLA-PBS copolymers, resulting in excellent melt-spinnability even for the PLLA/PBS blends with high PBS content up to 20 wt%. In addition, an increase in crystallinity of PLLA was achieved in PLLA/PBS blend fibers, thanks to the enhanced compatibility. More importantly, the presence of PBS nuclei retarded the molecular orientation of the amorphous PLLA phase, consistent with the effective results from the relaxation heat-setting treatment. These led to an exceptionally improved heat resistance of the PLLA/PBS blend fibers. As an encouraging result, the boiling water shrinkage was significantly reduced from ca. 20% for neat PLLA fibers to 3.7% for the PLLA/PBS blend fibers with 20 wt% PBS content. These findings may open up a facile and effective route to develop PLLA/PBS blend fibers showing sound spinnability, greatly improved heat resistance and softness.  相似文献   

16.
The micro construction of poly(epsilon-caprolactone) (PCL) and poly(L-lactic acid) (PLLA) blend films fabricated by solution casting under microwave irradiation was investigated by selective enzymatic degradation and scanning electron microscopy (SEM). The results were totally different from the blends obtained by conventional methods. The blend was more homogeneous and the PCL continuous phase more compact as no spherulites and tiny zone separation were observed from the film surface and no PCL network was observed inside the film, and the degradation of a PCL plank by Pseudomonas lipase was significantly retarded. The distributed PLLA micro spheres were enlarged and amorphous. The thermal behavior of the blend by microwave heating revealed that PCL and PLLA underwent a melting process, which induced the variations of the PCL phase and PLLA spheres. The weight loss caused by degradation of the PCL/PLLA blend obtained by conventional methods (B50c) is greater than that of the blend obtained by microwave methods (B50m), which reflects the change in morphology from a loose PCL network (B50c) to a dense PCL plank (B50m).  相似文献   

17.
Chain configuration influences phase behavior of blends of poly(methyl methacrylate) (PMMA) of different tactic configurations (syndiotacticity, isotacticity, or atacticity) with poly(L ‐lactic acid) (PLLA). Blends system of sPMMA/PLLA is immiscible with an asymmetry‐shaped UCST at ~250 °C. The phase behavior of the sPMMA/PLLA blend is similar to the aPMMA/PLLA blend that has been already proven in the previous work to exhibit similar UCST temperatures (230–250 °C) and asymmetry shapes in the UCST diagrams. On the other hand, the iPMMA/PLLA blend remains immiscible up to thermal degradation without showing any transition to UCST upon heating. The blend system with UCST, that is, sPMMA/PLLA, can be frozen in a state of miscibility by quenching to rapidly solidify from the homogeneous liquid at UCST, where the Tg‐composition relationship for the sPMMA/PLLA blend fits well with the Gordon‐Taylor Tg model with k = 0.15 and the blend's T leads to χ12 = ?0.26 for the UCST‐quenched sPMMA/PLLA blend. Both parameters (k and χ) as characterized for the frozen miscible blend suggest a relatively weak interaction between the two constituents (sPMMA and PLLA) in the blends. The interaction strength is likely not strong enough to maintain a thermodynamic miscibility when the blend is at ambient temperature or any lower temperatures below UCST. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2355–2369, 2008  相似文献   

18.
Superhydrophilic organic/inorganic hybrid surfaces have been fabricated on blend membranes of poly(vinylidene fluoride) (PVDF) and poly(styrene-alt-maleic anhydride) (SMA). The blend membranes were prepared from PVDF/SMA mixed solution with N,N-dimethylacetamide (DMAc) as solvent by immersion-precipitation phase inversion process. The gained blend membranes were immersed into γ-aminopropyltriethoxysilane (APTS) solution to generate SMA/silica hybrid surfaces by the reaction between anhydrides and APTS. The hybrid surfaces chemical compositions, morphologies and hydrophilicity were investigated in detail. It demonstrates that the hybrid surfaces possess micro-nano hierarchical structure and display superhydrophilicity property and good stability. Finally, the reaction and formation mechanism of the superhydrophilicity hybrid surface was discussed.  相似文献   

19.
Typical poly(l-lactic acid) (PLLA)-based polymer blends, PLLA/polyethylene (PE) and PLLA/poly(butylene succinate) (PBS), were degraded into each repolymerizable oligomer using environmentally benign catalysts, clay catalysts and enzymes, with the objective of developing a selective chemical recycling process. Two routes to selective chemical recycling of PLLA/PE blend were tested. One is the direct separation of PLLA and PE first by their different solubilities in toluene, followed by the chemical recycling of PLLA using montmorillonite K5 (MK5). The other is the selective degradation of PLLA in the PLLA/PE blend by MK5 in a toluene solution at 100 °C for 1 h forming the LA oligomer with a molecular weight of Mn = 200-300 g/mol, which is the best Mn for repolymerization. Thus regenerated PLLA had a Mw of greater than 100,000 g/mol. The PE remained unchanged and was quantitatively recovered by the reprecipitation method for material recycling. In a similar procedure, chemical recycling of PLLA/PBS blend was also carried out and compared by two routes. One is the direct separation of PLLA and PBS by solubility in toluene. The other route is the sequential degradation of PLLA/PBS blend using a lipase first to degrade PBS into cyclic oligomer, which was then repolymerized to produce a PBS. Next, PLLA was degraded into repolymerizable LA oligomer by MK5. The former procedure was carried out using a single solvent; however, the latter required mixed solvents, which decreased the efficient recycling use of solvents.  相似文献   

20.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号