首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we investigate the effects of different types of delays, a fixed delay and a random delay, on the dynamics of stochastic systems as well as their relationship with each other in the context of a just-in-time network model. The specific example on which we focus is a pork production network model. We numerically explore the corresponding deterministic approximations for the stochastic systems with these two different types of delays. Numerical results reveal that the agreement of stochastic systems with fixed and random delays depend on the population size and the variance of the random delay, even when the mean value of the random delay is chosen the same as the value of the fixed delay. When the variance of the random delay is sufficiently small, the histograms of state solutions to the stochastic system with a random delay are similar to those of the stochastic model with a fixed delay regardless of the population size. We also compared the stochastic system with a Gamma distributed random delay to the stochastic system constructed based on the Kurtz's limit theorem from a system of deterministic delay differential equations with a Gamma distributed delay. We found that with the same population size the histogram plots for the solution to the second system appear more dispersed than the corresponding ones obtained for the first case. In addition, we found that there is more agreement between the histograms of these two stochastic systems as the variance of the Gamma distributed random delay decreases.  相似文献   

2.
The paper deals with the classical problem of minimizing the makespan in a two-machine flow shop. When the job processing times are deterministic, the optimal job sequence can be determined by applying Johnson's rule. When they are independent and exponential random variables, Talwar's rule yields a job sequence that minimizes the makespan stochastically. Assuming that the random job processing times are independent and Gompertz distributed, we propose a new scheduling rule that is a generalization of both Johnson's and Talwar's rules. We prove that our rule yields a job sequence that minimizes the makespan stochastically. Extensions to m-machine proportionate stochastic flow shops, two-machine stochastic job shops, and stochastic assembly systems are indicated.  相似文献   

3.
This paper considers the stochastic capacitated arc routing problem (SCARP), obtained by taking random demands in the CARP. For real-world problems, it is important to create solutions that are insensitive to changes in demand, because these quantities are not deterministic but randomly distributed. This paper provides the basic concept of a new technique to compute such solutions, based upon the best method published for CARP: a hybrid genetic algorithm (HGA). The simulation analysis was achieved with the well-known DeArmon's, Eglese's and Belenguer's instances. This intensive evaluation process was carried out with 1000 replications providing high-quality statistical data. The results obtained prove that there is a great interest to optimize not only the solution cost but also the robustness of solutions. This work is a step forward to treat more realistic problems including industrial goals and constraints linked to demand variations.  相似文献   

4.
We consider a simple two-dimensional harmonic lattice with random, independent, and identically distributed masses. Using the methods of stochastic homogenization, we prove that solutions with initial data, which varies slowly relative to the lattice spacing, converge in an appropriate sense to solutions of an effective wave equation. The convergence is strong and almost sure. In addition, the role of the lattice's dimension in the rate of convergence is discussed. The technique combines energy estimates with powerful classical results about sub-Gaussian random variables.  相似文献   

5.
Parametric uncertainty quantification of the Rothermel's fire spread model is presented using the Polynomial Chaos expansion method under a Non-Intrusive Spectral Projection (NISP) approach. Several Rothermel's model input parameters have been considered random with an associated prescribed probability density function. Two different vegetation fire scenarios are considered and NISP method results and performance are compared with four other stochastic methodologies: Sensitivity Derivative Enhance Sampling; two Monte Carlo techniques; and Global Sensitivity Analysis. The stochastic analysis includes a sensitivity analysis study to quantify the direct influence of each random parameter on the solution. The NISP approach achieved performance three orders of magnitude faster than the traditional Monte Carlo method. The NISP capability to perform uncertainty quantification associated with fast convergence makes it well suited to be applied for stochastic prediction of fire spread.  相似文献   

6.
For the two-stage quadratic stochastic program where the second-stage problem is a general mixed-integer quadratic program with a random linear term in the objective function and random right-hand sides in constraints, we study continuity properties of the second-stage optimal value as a function of both the first-stage policy and the random parameter vector. We also present sufficient conditions for lower or upper semicontinuity, continuity, and Lipschitz continuity of the second-stage problem's optimal value function and the upper semicontinuity of the optimal solution set mapping with respect to the first-stage variables and/or the random parameter vector. These results then enable us to establish conclusions on the stability of optimal value and optimal solutions when the underlying probability distribution is perturbed with respect to the weak convergence of probability measures.  相似文献   

7.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

8.
We establish several methods for constructing stationary self-similar random fields (ssf's) on the integer lattice by “random wavelet expansion”, which stands for representation of random fields by sums of randomly scaled and translated functions, or more generally, by composites of random functionals and deterministic wavelet expansion. To construct ssf's on the integer lattice, random wavelet expansion is applied to the indicator functions of unit cubes at integer sites. We demonstrate how to construct Gaussian, symmetric stable, and Poisson ssf's by random wavelet expansion with mother wavelets having compact support or non-compact support. We also generalize ssf's to stationary random fields which are invariant under independent scaling along different coordinate axes. Finally, we investigate the construction of ssf's by combining wavelet expansion and multiple stochastic integrals.  相似文献   

9.
The effect of random phase for a complex Duffing's system is investigated. We show as the intensity of random noise properly increases the chaotic dynamical behavior will be suppressed by the criterion of top Lyapunov exponent, which is computed based on the Khasminskii's formulation and the extension of Wedig's algorithm for linear stochastic systems. Also Poincaré map analysis, phase plot and the time evolution are carried out to confirm the obtained results of Lyapunov exponent on dynamical behavior including the stability, bifurcation and chaos. Thus excellent agreement between these results is found.  相似文献   

10.
§1.引言在[1]、[2]及[3]中考虑了可以用偏微分方程方法处理的一类具有连续轨道的扩散过程的最优控制问题.近来[4]研究了具有跳跃的扩散过程的最优控制问题,证明了 reward函数满足 Bellman 方程.  相似文献   

11.
In this article we present an online simulation application for a decision problem that operates in real time, where products have to be dispatched from two depots to clients that are geographically distributed throughout the city. The system's behaviour is highly stochastic, due to the random behaviour of the client's demand (in time and space), and the random times of order preparation, travelling times of dispatchers (these are motorcycle drivers) and absence rate of drivers each day. A decision scheme is proposed that combines elements of vehicle routing with time windows, real-time dispatching of drivers and online simulation, through which information on future events is considered in the decision-making process. Two major conclusions are obtained when this scheme is applied to real data. First, we show that the proposed algorithm for order consolidation and route dispatching can be very advantageous from the point of view of logistics costs and quality of service. Second, we show that online simulation and, specifically, the Simulation-based Real-time Decision Making methodology (SRDM) can further improve the quality of the results. New ideas for further work are also proposed.  相似文献   

12.
Convergence dynamics of reaction–diffusion recurrent neural networks (RNNs) with continuously distributed delays and stochastic influence are considered. Some sufficient conditions to guarantee the almost sure exponential stability, mean value exponential stability and mean square exponential stability of an equilibrium solution are obtained, respectively. Lyapunov functional method, M-matrix properties, some inequality technique and nonnegative semimartingale convergence theorem are used in our approach. These criteria ensuring the different exponential stability show that diffusion and delays are harmless, but random fluctuations are important, in the stochastic continuously distributed delayed reaction–diffusion RNNs with the structure satisfying the criteria. Two examples are also given to demonstrate our results.  相似文献   

13.
Power dissipation characteristics of Stockbridge dampers (SD) is one of the important indexes in anti-vibration work of transmission line. The study focuses on the optimization of the SD's power dissipation characteristics under the effect of multi-structure parameter coupling. The aeolian vibration of overhead transmission lines is uncertain and random in stochastic dynamics. According to Strouhal formula, the relationship between the vibration frequency of transmission lines and wind speed can be found out. Based on the Weibull wind speed probability distribution, the probability density function of the transmission line conductor and damper coupling system vibration frequency is derived. The SD is considered as a typical 2-dimension of stochastic dynamical system. Based on the random process generated by the power dissipation of the SD, the characteristics of power dissipation and SD's resonant frequencies are analyzed when the multi-structure parameters of the SD are coupled. And the diagrams of the power dissipation at various frequencies are obtained.Based on the probability density function of the vibration frequency of the overhead conductor and damper, the objective function, namely the mathematical expectation of power dissipation (E(PD)), of the optimizations for the SD's power dissipation under the coupling of multiple structural parameters is proposed for the first time according to the author's knowledge. Constraint conditions of the optimizations are built by the quantization processing. The energy dissipation characteristics of the dampers can be evaluated by E(PD), and the power dissipation of SD with different coupled dual structure parameters is optimized based on the proposed method. The optimal values or the optimal value intervals of different coupled dual structure parameters are found, which may provide practical data.  相似文献   

14.
《随机分析与应用》2013,31(6):1577-1607
Abstract

Linear and semilinear stochastic evolution equations with additive noise, where the forcing term is an infinite dimensional fractional Brownian motion are studied. Under usual dissipativity conditions the equations are shown to define random dynamical systems which have unique, exponentially attracting fixed points. The results are applied to stochastic parabolic PDE's. They are also applicable to standard finite-dimensional dissipative stochastic equation driven by fractional Brownian motion.  相似文献   

15.
A stochastic dynamic system of second order is considered. The system evolution is described by a dynamic equation with a stochastic transition matrix, which is linear in the idempotent algebra with operations of maximum and addition. It is assumed that some entries of the matrix are zero constants and all other entries are mutually independent and exponentially distributed. The problem considered is the computation of the Lyapunov exponent, which is defined as the average asymptotic rate of growth of the state vector of the system. The known results related to this problem are limited to systems whose matrices have zero off-diagonal entries. In the cases of matrices with a zero row, zero diagonal entries, or only one zero entry, the Lyapunov exponent is calculated using an approach which is based on constructing and analyzing a certain sequence of one-dimensional distribution functions. The value of the Lyapunov exponent is calculated as the average value of a random variable determined by the limiting distribution of this sequence.  相似文献   

16.
This paper investigates the uncertainty of a hyper-elastic model by random material parameters as stochastic variables. For its stochastic discretization a polynomial chaos (PC) is used to expand the coefficients into deterministic and stochastic parts. Then, from experimental data in combination with artificial data for elastomers the distribution of the force-displacement curves are known. In the numerical example the PC-based stochastic and the deterministic parameter identification are used for generation of the distribution of Ogden's material parameters. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Abstract

This article is concerned with studying the following problem: Consider a multivariate stochastic process whose law is characterized in terms of some infinitesimal characteristics, such as the infinitesimal generator in case of finite Markov chains. Under what conditions imposed on these infinitesimal characteristics of this multivariate process, the univariate components of the process agree in law with given univariate stochastic processes. Thus, in a sense, we study a stochastic processe' counterpart of the stochastic dependence problem, which in case of real valued random variables is solved in terms of Sklar's theorem.  相似文献   

18.
In this paper, we will prove that the random version of Fan's Theorem [6, Theorem 2] is true for a random hemicompact 1-set-contractive map defined on a closed ball, a sphere and an annulus in cones. This class of random 1-set-contractive map includes random condensing maps, random continuous semicontractive maps, random LANE maps, random nonexpansive maps and others. As applications of our theorems, some random fixed point theorems of non-self-maps are proved under various well-known boundary conditions. Our results are generalizations, improvements or stochastic versions of the recent results obtained by many authors  相似文献   

19.
Abstract

An analogy between stochastic optimization and the gambler's ruin problem is used to estimate the expected value of the number of function evaluations required to reach the extremum of a special objective function with a pafrticular random walk. The objective function is the sum of the squares of the independent variables. The optimization is accomplished when the random walk enters a suitably defined small neighborhood of the extremum. The results indicate that for this objective function the expected number of function evaluations increases as the number of dimensions to the five halves power. Results of extensive computations of optimizing random walks in spaces with dimensions ranging from 2 to 30 agree with the analytically predicted behavior.  相似文献   

20.
A general jerky equation with random excitation is investigated in this paper. Before introducing the random excitation term, the equation is reduced to a two-dimensional model when undergoing a Hopf bifurcation. Then the model with the parametric excitation and external excitation is converted to a stochastic differential equation with singularity based on the stochastic average theory. For the equation, its dynamical behaviors are analyzed in different parameters'' spaces, including the stability, stochastic bifurcation and stationary solution. Besides, numerical simulations are given to show the asymptotic behavior of the stationary solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号