首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
丁倩  陈涛  李政  冯兆池  王秀丽 《催化学报》2021,42(5):808-816,中插21-中插23
研究半导体光催化分解水反应中光生电荷动力学和助催化剂的作用对理解其反应机理至关重要.一般来说,助催化剂不仅可以促进半导体/助催化剂界面处的光生电荷高效分离,而且可以作为反应活性中心来直接催化表面氧化或还原反应.Cr2O3-Rh是一种重要的产氢助催化剂,通过担载Cr2O3-Rh助催化剂来提高光催化分解水的策略被应用到许多光催化分解水体系中.已有研究发现,Rh/Cr2O3核壳结构助催化剂的产氢活性位仍然在Rh纳米粒子表面,而Cr2O3壳层阻止O2到达Rh核从而抑制生成水的逆反应.此外,在(Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx)光催化剂中,CrOx促进了从半导体光催化剂到活性位RhOx的电子转移.然而,Cr2O3-Rh助催化剂的作用本质(包括Cr2O3所起的作用)仍然是一个悬而未决的问题,特别是Cr2O3-Rh助催化剂的担载对半导体催化剂中光生电荷动力学影响的研究还非常少.本文采用原位光沉积的方法制备了Ga2O3、Rh/Ga2O3、Cr2O3/Ga2O3和Cr2O3-Rh/Ga2O3等一系列光催化剂;采用紫外可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)、CO吸附红外光谱和高分辨透射电镜(HRTEM)等表征手段研究了Cr2O3-Rh助催化剂的结构和形貌;采用时间分辨红外光谱(TR-MIR)研究了这些光催化剂在真空或者反应物(水汽或者氧气)存在条件下的光生电子的衰减动力学过程.UV-Vis DRS结果表明,Ga2O3的带隙基本上不受Rh或者Cr2O3-Rh助催化剂担载的影响.XPS结果表明,Cr2O3和Rh成功地担载在Ga2O3表面上.CO吸附红外和HRTEM结果表明,在Cr2O3-Rh助催化剂中Rh纳米粒子被Cr2O3部分覆盖.光生电子的衰减动力学研究结果显示,Ga2O3中光生电子很难直接参与质子还原反应,只有被Rh捕获后的电子才能高效地参与产氢反应;在水汽存在条件下Ga2O3、Rh/Ga2O3和Cr2O3-Rh/Ga2O3中光生电子的衰减速率随着它们光催化产氢活性的升高而增加;与Cr2O3/Ga2O3和Rh/Ga2O3相比,Cr2O3-Rh/Ga2O3中光生电子的初始吸光度和寿命均减小,说明Cr2O3对Rh/Ga2O3的结构修饰促进了电子从Ga2O3向Rh的转移过程,从而加速了质子还原反应.最后,基于这些结果提出了Cr2O3-Rh/Ga2O3光催化剂上的光催化分解水机理.本文的研究结果有利于更加深入地认识半导体光催化分解水反应机理,并为高效半导体光催化剂的合成提供一定的理论支持和指导.  相似文献   

2.
能源和环境危机是当今社会面临的两大关键课题,利用太阳光驱动化学反应、将太阳能转化为化学能是解决上述问题的重要措施。通过光催化分解水是直接利用太阳能生产氢燃料的有效策略。光催化水分解过程可以分为三个基元步骤:光吸收、电荷分离与迁移、以及表面氧化还原反应。助催化剂可有效提高电荷分离效率、提供反应活性位点并抑制催化剂光腐蚀的发生,进而提高水分解效率。助催化剂也可以通过活化水分子以提高表面氧化还原动力学,进而提升整体光催化反应的太阳能转换效率。本文综述了助催化剂在光催化反应中的重要作用以及目前常用的助催化剂类型,详细说明了在光催化全解水过程中双助催化剂体系的构建及作用机理,并根据限制全解水的关键因素提出了新型助催化剂的设计策略。  相似文献   

3.
Overall water splitting to produce H2 and O2 over a semiconductor photocatalyst using solar energy is a promising process for the large-scale production of clean, recyclable H2. Numerous attempts have been made to develop photocatalysts that function under visible-light irradiation to efficiently utilize solar energy. In general, overall water splitting over a photocatalyst particle can be achieved by modifying the photocatalyst with a suitable cocatalyst to provide an active redox site. Therefore, the development of active photocatalytic materials has relied on both photocatalysts and cocatalysts. This review article describes the historical development of water-splitting photocatalysts.  相似文献   

4.
In situ photo-deposition of both Pt and CoOx cocatalysts on the facets of poly (triazine imide) (PTI) crystals has been developed for photocatalytic overall water splitting. However, the undesired backward reaction (i.e., water formation) on the noble Pt surface is a spontaneously down-hill process, which restricts their efficiency to run the overall water splitting reaction. Herein, we demonstrate that the efficiency for photocatalytic overall water splitting could be largely promoted by the decoration of Rh/Cr2O3 and CoOx as H2 and O2 evolution cocatalysts, respectively. Results reveal that the dual cocatalysts greatly extract charges from bulk to surface, while the Rh/Cr2O3 cocatalyst dramatically restrains the backward reaction, achieving an apparent quantum efficiency (AQE) of 20.2 % for the photocatalytic overall water splitting reaction.  相似文献   

5.
Inspired by natural photosynthesis, Z‐scheme photocatalytic systems are very appealing for achieving efficient overall water splitting. Developing metal‐free Z‐scheme photocatalysts for overall water splitting, however, still remains challenging. The construction of polymer‐based van der Waals heterostructures as metal‐free Z‐scheme photocatalytic systems for overall water splitting is described using aza‐fused microporous polymers (CMP) and C2N ultrathin nanosheets as O2‐ and H2‐evolving catalysts, respectively. Although neither polymer is able to split pure water using visible light, a 2:1 stoichiometric ratio of H2 and O2 was observed when aza‐CMP/C2N heterostructures were used. A solar‐to‐hydrogen conversion efficiency of 0.23 % was determined, which could be further enhanced to 0.40 % by using graphene as the solid electron mediator to promote the interfacial charge‐transfer process. This study highlights the potential of polymer photocatalysts for overall water splitting.  相似文献   

6.
Platinum is a commonly used cocatalyst for improved charge separation and surface reactions in photocatalytic water splitting. It is envisioned that its practical applications can be facilitated by further reducing the material cost and improving the efficacy of Pt cocatalysts. In this direction, the use of atomically controlled Pd@Pt quasi‐core–shell cocatalysts in combination with TiO2 as a model semiconductor is described. As demonstrated experimentally, the electron trapping necessary for charge separation is substantially promoted by combining a Schottky junction with interfacial charge polarization, enabled by the three‐atom‐thick Pt shell. Meanwhile, the increase in electron density and lattice strain would significantly enhance the adsorption of H2O onto Pt surface. Taken together, the improved charge separation and molecular activation dramatically boost the overall efficiency of photocatalytic water splitting.  相似文献   

7.
王蒙  马建泰  吕功煊 《分子催化》2019,33(5):461-485
在光催化全分解水产氢的过程中, Pt等助催化剂在催化产生氢的同时也会诱导催化氢气和氧气重新复合为水的逆反应,严重降低了悬浮体系光催化全分解水产氢的效率.我们综述了近年来在逆反应抑制方面的研究进展,总结和对比分析了各种抑制逆反应策略的特点,并对将这些方法应用于悬浮体系光催化全分解水制氢的前景进行了展望.  相似文献   

8.
Photocatalytic overall water splitting has been recognized as a promising approach to convert solar energy into hydrogen. However, most of the photocatalysts suffer from low efficiencies mainly because of poor charge separation. Herein, taking a model semiconductor gallium nitride (GaN) as an example, we uncovered that photogenerated electrons and holes can be spatially separated to the nonpolar and polar surfaces of GaN nanorod arrays, which is presumably ascribed to the different surface band bending induced by the surface polarity. The photogenerated charge separation efficiency of GaN can be enhanced significantly from about 8 % to more than 80 % via co‐exposing polar and nonpolar surfaces. Furthermore, spatially assembling reduction and oxidation cocatalysts on the nonpolar and polar surfaces remarkably boosts photocatalytic overall water splitting, with the quantum efficiency increased from 0.9 % for the film photocatalyst to 6.9 % for the nanorod arrays photocatalyst.  相似文献   

9.
The efficiency of photocatalytic overall water splitting reactions is usually limited by the high energy barrier and complex multiple electron-transfer processes of the oxygen evolution reaction (OER). Although bismuth vanadate (BiVO4) as the photocatalyst has been developed for enhancing the kinetics of the water oxidation reaction, it still suffers from challenges of fast recombination of photogenerated electron-hole pairs and poor photocatalytic activity. Herein, six MII-CoIII Prussian blue analogues (PBAs) (M=Mn, Fe, Co, Ni, Cu and Zn) cocatalysts are synthesized and deposited on the surface of BiVO4 for boosting the surface catalytic efficiency and enhancing photogenerated carries separation efficiency of BiVO4. Six MII-CoIII PBAs@BiVO4 photocatalysts all demonstrate increased photocatalytic water oxidation performance compared to that of BiVO4 alone. Among them, the Co−Co PBA@BiVO4 photocatalyst is employed as a representative research object and is thoroughly characterized by electrochemistry, electronic microscope as well as multiple spectroscopic analyses. Notably, BiVO4 coupling with Co−Co PBA cocatalyst could capture more photons than that of pure BiVO4, facilitating the transfer of photogenerated charge carriers between BiVO4 and Co−Co PBA as well as the surface catalytic efficiency of BiVO4. Overall, this work would promote the synthesis strategy development for exploring new types of composite photocatalysts for water oxidation.  相似文献   

10.
Semiconductor photocatalysts are hardly employed for overall water splitting beyond 700 nm, which is due to both thermodynamic aspects and activation barriers. Metallic materials as photocatalysts are known to overcome this limitation through interband transitions for creating electron–hole pairs; however, the application of metallic photocatalysts for overall water splitting has never been fulfilled. Black tungsten nitride is now employed as a metallic photocatalyst for overall water splitting at wavelengths of up to 765 nm. Experimental and theoretical results together confirm that metallic properties play a substantial role in exhibiting photocatalytic activity under red-light irradiation for tungsten nitride. This work represents the first red-light responsive photocatalyst for overall water splitting, and may open a promising venue in searching of metallic materials as efficient photocatalysts for solar energy utilization.  相似文献   

11.
Environmentally sustainable and selective conversion of methane to valuable chemicals under ambient conditions is pivotal for the development of next-generation photocatalytic technology. However, due to the lack of microscopic knowledge about non-thermal methane conversion, controlling and modulating photocatalytic oxidation processes driven by photogenerated holes remain a challenge. Here, we report novel function of metal cocatalysts to accept photogenerated holes and dominate selectivity of methane oxidation, which is clearly beyond the conventional concept in photocatalysis that the metal cocatalysts loaded on the surfaces of semiconductor photocatalysts mostly capture photogenerated electrons and dominate reduction reactions exclusively. The novel photocatalytic role of metal cocatalysts was verified by operando molecular spectroscopy combined with real-time mass spectrometry for metal-loaded Ga2O3 model photocatalysts under methane and water vapor at ambient temperature and pressure. Our concept of metal cocatalysts that work as active sites for both photocatalytic oxidation and reduction provides a new understanding of photocatalysis and a solid basis for controlling non-thermal redox reactions by metal-cocatalyst engineering.  相似文献   

12.
Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2/O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+/Fe2+. Well‐defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar‐to‐chemical efficiency over 1.9 % and a solar‐to‐hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.  相似文献   

13.
Solar-driven water-splitting has been considered as a promising technology for large-scale generation of sustainable energy for succeeding generations. Recent intensive efforts have led to the discovery of advanced multi-element-compound water-splitting electrocatalysts with very small overpotentials in anticipation of their application to solar cell-assisted water electrolysis. Although photocatalytic and photoelectrochemical water-splitting systems are more attractive approaches for scaling up without much technical complexity and high investment costs, improving their efficiencies remains a huge challenge. Hybridizing photocatalysts or photoelectrodes with cocatalysts has been an effective scheme to enhance their overall solar energy conversion efficiencies. However, direct integration of highly-active electrocatalysts as cocatalysts introduces critical factors that require careful consideration. These additional requirements limit the design principle for cocatalysts compared with electrocatalysts, decelerating development of cocatalyst materials. This perspective first summarizes the recent advances in electrocatalyst materials and the effective strategies to assemble cocatalyst/photoactive semiconductor composites, and further discusses the core principles and tools that hold the key in designing advanced cocatalysts and generating a deeper understanding on how to further push the limits of water-splitting efficiency.

This perspective briefly reviews recently developed water splitting electrocatalyst materials and discusses their utilization as cocatalysts for photocatalytic and photoelectrochemical water splitting systems.  相似文献   

14.
The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble-metal-free alternative plasmonic materials have attracted ever-increasing interest.Here we report the first use of plasmonic zirconium nitride(ZrN) nanoparticles as a promising photocatalyst for water splitting.Highl...  相似文献   

15.
One of the main targets of studies on water splitting photocatalysts is to develop semiconductor materials with narrower bandgaps capable of overall water splitting for efficient harvesting of solar energy. A series of transition‐metal oxynitrides, LaMgxTa1?xO1+3xN2?3x (x≥1/3), with a complex perovskite structure was reported as the first example of overall water splitting operable at up to 600 nm. The photocatalytic behavior of LaMg1/3Ta2/3O2N was investigated in detail in order to optimize photocatalyst preparation and water‐splitting activity. Various attempts exploring photocatalyst preparation steps, that is, cocatalyst selection, coating material and method, and synthesis method for the oxide precursor, revealed photocatalyst structures necessary for achieving overall water splitting. Careful examination of photocatalyst preparation procedures likely enhanced the quality of the produced photocatalyst, leading to a more homogeneous coating quality and semiconductor particles with fewer defects. Thus, the photocatalytic activity for water splitting on LaMg1/3Ta2/3O2N was largely enhanced.  相似文献   

16.
Photocatalytic overall water splitting has been recognized as a promising approach to convert solar energy into hydrogen. However, most of the photocatalysts suffer from low efficiencies mainly because of poor charge separation. Herein, taking a model semiconductor gallium nitride (GaN) as an example, we uncovered that photogenerated electrons and holes can be spatially separated to the nonpolar and polar surfaces of GaN nanorod arrays, which is presumably ascribed to the different surface band bending induced by the surface polarity. The photogenerated charge separation efficiency of GaN can be enhanced significantly from about 8 % to more than 80 % via co-exposing polar and nonpolar surfaces. Furthermore, spatially assembling reduction and oxidation cocatalysts on the nonpolar and polar surfaces remarkably boosts photocatalytic overall water splitting, with the quantum efficiency increased from 0.9 % for the film photocatalyst to 6.9 % for the nanorod arrays photocatalyst.  相似文献   

17.
It is a challenge to explore photocatalytic materials for sunlight-driven water splitting owing to the limited choice of a single semiconductor with suitable band energy levels but with a minimized band gap for light harvesting. Here, we report a one-photon excitation pathway by coupling polymeric carbon nitride (PCN) semiconductor with LaOCl to achieve overall water splitting. This artificial photosynthesis composite catalyzes the decomposition of H2O into H2 and O2, with evolution rates of 22.3 and 10.7 μmol h−1, respectively. The high photocatalytic performance of PCN/LaOCl can be ascribed to the simultaneously accomplished reduction and oxidation of water on LaOCl and PCN domains, respectively, as well as the fast charge separation and migration induced by the interfacial electric field related to LaOCl modification. This study provides new insights on the development of composite photocatalysts for pure water splitting based on polymer-based materials via charge modulation.  相似文献   

18.
Semiconductor photocatalysts are hardly employed for overall water splitting beyond 700 nm, which is due to both thermodynamic aspects and activation barriers. Metallic materials as photocatalysts are known to overcome this limitation through interband transitions for creating electron–hole pairs; however, the application of metallic photocatalysts for overall water splitting has never been fulfilled. Black tungsten nitride is now employed as a metallic photocatalyst for overall water splitting at wavelengths of up to 765 nm. Experimental and theoretical results together confirm that metallic properties play a substantial role in exhibiting photocatalytic activity under red‐light irradiation for tungsten nitride. This work represents the first red‐light responsive photocatalyst for overall water splitting, and may open a promising venue in searching of metallic materials as efficient photocatalysts for solar energy utilization.  相似文献   

19.
吕功煊 《分子催化》2019,33(6):461-485
在光催化分解水产氢的过程中,Pt等助催化剂在催化产生氢的同时也会诱导催化氢气和氧气重新复合为水的逆反应,严重降低了悬浮体系光催化全分解水产氢的效率。本文综述了近年来在逆反应抑制方面的研究进展,总结和对比分析了各种抑制逆反应策略的特点,并对这些方法的应用于悬浮体系光催化全分解水制氢的前景进行了展望。  相似文献   

20.
Photocatalytic hydrogen (H2) production represents a very promising but challenging contribution to a clean, sustainable and renewable energy system. The photocatalyst material plays a key role in photocatalytic H2 production, and it has proven difficult to obtain corrosion resistant, chemically stable, visible light harvesting and highly efficient photocatalysts, which have their band edges matching the O2 and H2 production levels. Nanoscience and nanotechnology are opening a new vista in the development of highly active, nanostructured photocatalysts with large surface areas for optimized light absorption, minimized distances (or times) for charge-carrier transport, and further favorable properties. Our focus here is on recently developed nanostructured photocatalysts. In particular, the particle size, chemical composition (including dopants), microstructure, crystal phase, morphology, surface modification, bandgap and flat-band potential of the nanophotocatalysts have shown a visible effect on photocatalytic H2 production rates, which may be further increased by adding sensitizers, cocatalysts or scavengers. Finally, potential directions required to push this research field a step further are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号