首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This paper is concerned with some mathematical and numerical aspects of a Lotka-Volterra competition time-fractional reaction-diffusion system with cross-diffusion effects. First, we study the existence of weak solutions of the model following the well-known Faedo-Galerkin approximation method and convergence arguments. We demonstrate the convergence of approximate solutions to actual solutions using the energy estimates. Next, the Galerkin finite element scheme is proposed for the considered model. Further, various numerical simulations are performed to show that the fractional-order derivative plays a significant role on the morphological changes of the considered competition model.  相似文献   

2.
The Stokes system with a discontinuous coefficient (Stokes interface problem) and its finite element approximations are considered. We firstly show a general error estimate. To derive explicit convergence rates, we introduce some appropriate assumptions on the regularity of exact solutions and on a geometric condition for the triangulation. We mainly deal with the MINI element approximation and then consider P1-iso-P2/P1 element approximation. Results are expected to give an instructive remark in numerical analysis for two-phase flow problems.  相似文献   

3.
In this paper, we propose a method to improve the convergence rate of the lowest order Raviart-Thomas mixed finite element approximations for the second order elliptic eigenvalue problem. Here, we prove a supercloseness result for the eigenfunction approximations and use a type of finite element postprocessing operator to construct an auxiliary source problem. Then solving the auxiliary additional source problem on an augmented mixed finite element space constructed by refining the mesh or by using the same mesh but increasing the order of corresponding mixed finite element space, we can increase the convergence order of the eigenpair approximation. This postprocessing method costs less computation than solving the eigenvalue problem on the finer mesh directly. Some numerical results are used to confirm the theoretical analysis.  相似文献   

4.
《计算数学(英文版)》2023,41(4):771-796
We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space. The model describes the motion of the film\slash vapor interface with contact line migration and is governed by the surface diffusion equation with proper boundary conditions at the contact line. We present a weak formulation for the problem, in which the contact angle condition is weakly enforced. By using piecewise linear elements in space and backward Euler method in time, we then discretize the formulation to obtain a parametric finite element approximation, where the interface and its contact line are evolved simultaneously. The resulting numerical method is shown to be well-posed and unconditionally energy-stable. Furthermore, the numerical method is generalized to the case of anisotropic surface energies in the Riemannian metric form. Numerical results are reported to show the convergence and efficiency of the proposed numerical method as well as the anisotropic effects on the morphological evolution of thin films in solid-state dewetting.  相似文献   

5.
We consider the approximation of operator functions in resolvent Krylov subspaces. Besides many other applications, such approximations are currently of high interest for the approximation of φ-functions that arise in the numerical solution of evolution equations by exponential integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behaviour if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we analyse a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators whose field of values lies in the left half plane. In contrast to standard Krylov methods, the convergence will be independent of the norm of the discretised operator and thus of the spatial discretisation. We will discuss efficient implementations for finite element discretisations and illustrate our analysis with numerical experiments.  相似文献   

6.
A finite volume/element approximation of a mean field modelof superconducting vortices in one and two dimensions is presented.The solutions of these approximations are investigated. A finiteelement approximation of the free boundary problem which isa special case of the steady state solution of the model isalso studied. We present some computed results from these approximations. Received 3 December 1997. Accepted 17 May 2000.  相似文献   

7.
We consider a scalar advection-diffusion problem and a recently proposed discontinuous Galerkin approximation, which employs discontinuous finite element spaces and suitable bilinear forms containing interface terms that ensure consistency. For the corresponding sparse, nonsymmetric linear system, we propose and study an additive, two-level overlapping Schwarz preconditioner, consisting of a coarse problem on a coarse triangulation and local solvers associated to a family of subdomains. This is a generalization of the corresponding overlapping method for approximations on continuous finite element spaces. Related to the lack of continuity of our approximation spaces, some interesting new features arise in our generalization, which have no analog in the conforming case. We prove an upper bound for the number of iterations obtained by using this preconditioner with GMRES, which is independent of the number of degrees of freedom of the original problem and the number of subdomains. The performance of the method is illustrated by several numerical experiments for different test problems using linear finite elements in two dimensions.

  相似文献   


8.
We consider the numerical approximations of the three-dimensional steady potential flow around a body moving in a liquid of finite constant depth at constant speed and distance below a free surface in a channel. One vertical side is introduced as the up-stream artificial boundary and two vertical sides are introduced as the downstream arti-ficial boundaries. On the artificial boundaries, a sequence of high-order global artificial boundary conditions are given. Then the original problem is reduced to a problem defined on a finite computational domain, which is equivalent to a variational problem. After solving the variational problem by the finite element method, we obtain the numerical approximation of the original problem. The numerical examples show that the artificial boundary conditions given in this paper are very effective.  相似文献   

9.
We consider the approximation of trigonometric operator functions that arise in the numerical solution of wave equations by trigonometric integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behavior if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we propose and analyze a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators. In contrast to standard Krylov methods, the convergence will be independent of the norm of the operator and thus of its spatial discretization. We will discuss efficient implementations for finite element discretizations and illustrate our analysis with numerical experiments. AMS subject classification (2000)  65F10, 65L60, 65M60, 65N22  相似文献   

10.
In this article, we consider the problem of optimal approximation of eigenfunctions of Schrödinger operators with isolated inverse square potentials and of solutions to equations involving such operators. It is known in this situation that the finite element method performs poorly with standard meshes. We construct an alternative class of graded meshes, and prove and numerically test optimal approximation results for the finite element method using these meshes. Our numerical tests are in good agreement with our theoretical results.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1130–1151, 2014  相似文献   

11.
In this work we study a one-dimensional contact problem in generalized thermoelasticity under the Green-Lindsay theory. Unilateral contact with an elastic obstacle is assumed. We consider the quasi-static and the fully dynamic situations. We prove existence and uniqueness results and propose finite element approximations in space with backward Euler discretization in time. Stability results are given and some numerical experiments reported. The second sound effect of heat conduction is observed in the simulations.  相似文献   

12.
A Regularized Newton-Like Method for Nonlinear PDE   总被引:1,自引:0,他引:1  
An adaptive regularization strategy for stabilizing Newton-like iterations on a coarse mesh is developed in the context of adaptive finite element methods for nonlinear PDE. Existence, uniqueness and approximation properties are known for finite element solutions of quasilinear problems assuming the initial mesh is fine enough. Here, an adaptive method is started on a coarse mesh where the finite element discretization and quadrature error produce a sequence of approximate problems with indefinite and ill-conditioned Jacobians. The methods of Tikhonov regularization and pseudo-transient continuation are related and used to define a regularized iteration using a positive semidefinite penalty term. The regularization matrix is adapted with the mesh refinements and its scaling is adapted with the iterations to find an approximate sequence of coarse-mesh solutions leading to an efficient approximation of the PDE solution. Local q-linear convergence is shown for the error and the residual in the asymptotic regime and numerical examples of a model problem illustrate distinct phases of the solution process and support the convergence theory.  相似文献   

13.
We propose a new least squares finite element method to solve the Stokes problem with two sequential steps. The approximation spaces are constructed by the patch reconstruction with one unknown per element. For the first step, we reconstruct an approximation space consisting of piecewise curl-free polynomials with zero trace. By this space, we minimize a least squares functional to obtain the numerical approximations to the gradient of the velocity and the pressure. In the second step, we minimize another least squares functional to give the solution to the velocity in the reconstructed piecewise divergence-free space. We derive error estimates for all unknowns under both $L^2$ norms and energy norms. Numerical results in two dimensions and three dimensions verify the convergence rates and demonstrate the great flexibility of our method.  相似文献   

14.
In this paper, we provide a theoretical analysis of the partition of unity finite elementmethod (PUFEM), which belongs to the family of meshfree methods. The usual erroranalysis only shows the order of error estimate to the same as the local approximations[12].Using standard linear finite element base functions as partition of unity and polynomials aslocal approximation space, in 1-d case, we derive optimal order error estimates for PUFEMinterpolants. Our analysis show that the error estimate is of one order higher than thelocal approximations. The interpolation error estimates yield optimal error estimates forPUFEM solutions of elliptic boundary value problems.  相似文献   

15.
In this paper, we consider the problem of solution uniqueness for the second order elliptic boundary value problem, by looking at its finite element or finite difference approximations. We derive several equivalent conditions, which are simpler and easier than the boundedness of the entries of the inverse matrix given in Yamamoto et al., [T. Yamamoto, S. Oishi, Q. Fang, Discretization principles for linear two-point boundary value problems, II, Numer. Funct. Anal. Optim. 29 (2008) 213–224]. The numerical experiments are provided to support the analysis made. Strictly speaking, the uniqueness of solution is equivalent to the existence of nonzero eigenvalues in the corresponding eigenvalue problem, and this condition should be checked by solving the corresponding eigenvalue problems. An application of the equivalent conditions is that we may discover the uniqueness simultaneously, while seeking the approximate solutions of elliptic boundary equations.  相似文献   

16.
In this article, we establish the existence and uniqueness of solutions to the coupled reaction–diffusion models using Banach fixed point theorem. The Galerkin finite element method is used for the approximation of solutions, and an a priori error estimate is derived for such approximations. A scheme is proposed by combining the Crank–Nicolson and the predictor–corrector methods for the time discretization. Some numerical examples are considered to illustrate the accuracy and efficiency of the proposed scheme. It is found that the scheme is second‐order convergent. In addition, nonuniform grids are used in some cases to enhance the accuracy of the scheme.  相似文献   

17.
In this paper, we study numerical approximations of a nonlinear eigenvalue problem and consider applications to a density functional model. We prove the convergence of numerical approximations. In particular, we establish several upper bounds of approximation errors and report some numerical results of finite element electronic structure calculations that support our theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Navier-Stokes方程带Backtracking技巧的两重网格算法   总被引:3,自引:1,他引:2  
1 引 言考虑二维不可压 Navier-Stokes方程:  相似文献   

19.
Summary It is shown that a boundary-value problem based on a holonomic elastic-plastic constitutive law may be formulated equivalently as a variational inequality of the second kind. A regularised form of the problem is analysed, and finite element approximations are considered. It is shown that solutions based on finite element approximation of the regularised problem converge.  相似文献   

20.
We consider the Euler discretisation of a scalar linear test equation with positive solutions and show for both strong and weak approximations that the probability of positivity over any finite interval of simulation tends to unity as the step size approaches zero. Although a.s. positivity in an approximation is impossible to achieve, we develop for the strong (Maruyama) approximation an asymptotic estimate of the number of mesh points required for positivity as our tolerance of non-positive trajectories tends to zero, and examine the effectiveness of this estimate in the context of practical numerical simulation. We show how this analysis generalises to equations with a drift coefficient that may display a high level of nonlinearity, but which must be linearly bounded from below (i.e. when acting towards zero), and a linearly bounded diffusion coefficient. Finally, in the linear case we develop a refined asymptotic estimate that is more useful as an a priori guide to the number of mesh points required to produce positive approximations with a given probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号