首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈国强  汪洋 《高分子科学》2013,31(5):719-736
Microbial polyhydroxyalkanoates(PHAs) are a family of biopolyesters produced by many wild type and engineered bacteria.PHAs have diverse structures accompanied by flexible thermal and mechanical properties.Combined with their in vitro biodegradation,cell and tissue compatibility,PHAs have been studied for medical applications,especially medical implants applications,including heart valve tissue engineering,vascular tissue engineering,bone tissue engineering,cartilage tissue engineering,nerve conduit tissue engineering as well as esophagus tissue engineering.Most studies have been conducted in the authors’ lab in the past 20+ years.Recently,mechanism on PHA promoted tissue regeneration was revealed to relate to cell responses to PHA biodegradation products and cell-material interactions mediated by microRNA.Very importantly,PHA implants were found not to cause carcinogenesis during long-term implantation.Thus,PHAs should have a bright future in biomedical areas.  相似文献   

2.
Properties of polymer alloys comprising poly(lactic acid) and Nodax copolymers are investigated. Nodax is a family of bacterially produced polyhydroxyalkanoate (PHA) copolymers comprising 3-hydroxybutyrate (3HB) and other 3-hydroxyalkanoate (3HA) units with side groups greater than or equal to three carbon units. The incorporation of 3HA units with medium-chain-length (mcl) side groups effectively lowers the crystallinity and the melt temperature, Tm, of this class of PHA copolymers, in a manner similar to that of alpha olefins controlling the properties of linear low density polyethylene. The lower Tm makes the material easier to process, as the thermal decomposition temperature of PHAs is then relatively low. The reduced crystallinity provides the ductility and toughness required for many plastics applications. When a small amount of ductile PHA is blended with poly(lactic acid) (PLA), a new type of polymer alloy with much improved properties is created. The toughness of PLA is substantially increased without a reduction in the optical clarity of the blend. The synergy between the two materials, both produced from renewable resources, is attributed to the retardation of crystallization of PHA copolymers finely dispersed in a PLA matrix as discrete domains.  相似文献   

3.
This article provides an overview of biopolymers, classed according to their chemical structures, function and occurrence, the principles of biosynthesis and metabolism in organisms. It will then focus on polyhydroxyalkanoates (PHA) for which technical applications in several areas are currently considered. PHAs represent a complex class of bacterial polyesters consisting of various hydroxyalkanoic acids that are synthesized by bacteria as storage compounds for energy and carbon if a carbon source is present in excess. Poly(3‐hydroxybutyrate), poly(3HB), is just one example. Most other PHAs are only synthesized if pathways exist which mediate between central intermediates of the metabolism or special precursor substrates on one side and coenzyme A thioesters of hydroxyalkanoic acids, which are the substrates of the PHA synthase catalyzing the polymerization, on the other side. During the last decade, basic and applied research have revealed much knowledge about the biochemical and molecular basis of the enzymatic processes for the synthesis of PHAs in microorganisms. The combination of detailed physiological studies, utilization of the overwhelming information provided by the numerous genome sequencing projects, application of recombinant DNA technology, engineering of metabolic pathways or enzymes and molecular breeding techniques applied to plants have provided new perspectives to produce these technically interesting biopolymers by novel or significantly improved biotechnological processes or by agriculture. Some examples for successful in vivo and in vitro engineering of pathways suitable for the synthesis and biotechnological production of PHAs consisting of medium‐chain‐length 3‐hydroxyalkanoic acids and short‐chain‐length hydroxyalkanoic acids will be provided.  相似文献   

4.
Poly(2,2’-disulfonyl-4,4’-benzidine terephthalamide) (PBDT), a kind of liquid-crystalline (LC) molecule, has high molecular weight, negative charge and a semi-rigid structure. The aqueous solution of PBDT shows nematic liquid crystalline state above a critical PBDT concentration, CLC*, of 2 wt%-3wt%. Different from the flexible polyelectrolyte, PBDT shows a variety of self-assembling structures in aqueous solution with and without salt due to the semi-rigid nature and highly charged property. In addition, the hydrogels with ordered structure are developed by polymerizing a cationic monomer N-[3-(N,N-dimethylamino) propyl] acrylamide methyl chloride quarternary (DMAPAA-Q) in the presence of a small amount of PBDT below the CLC*. During the polymerization of cationic monomer, the polycations form a complex with semi-rigid PBDT through electrostatic interaction; these complexes self-assemble into ordered structures that are frozen in the hydrogel. Several different structures, including the anisotropic, dual network-like structure, and cylindrically symmetric structure, with various length scales from micrometer to millimeter, are observed. The hydrogels with ordered liquid crystalline assemblies and particular optical properties should promise applications in many fields, such as in bionics, tissue engineering, and mechano-optical sensors.  相似文献   

5.
Bacterial polyhydroxyalkanoates (PHAs) are polyesters of 3-hydroxyacids produced as intracellular granules by a large variety of bacteria, currently receiving much attention because of their potential as renewable and biodegradable plastics. The monomer units in these microbial polyesters are all in the R-configuration due to the stereospecificity of biosynthetic enzymes. Pseudomonads synthesise mainly medium-chain-lenght PHAs, formed of monomers of 6 to 14 carbons. The PHA monomer composition is influenced by the substrate added to the growth media and determines the physical properties of the plastic material. The capability of Pseudomonads to incorporate many different functional groups into the PHAs does extend their physical properties and potential applications, and suggests various possibilities to produce tailor-made polymers. The mcl-PHAs are of major interest for specific uses, where chirality and elastomeric property of the polymers are important. In this report we will focus on the biotechnological production, recovery and possible applications of mcl-PHAs.  相似文献   

6.
A set of polyhydroxyalkanoates are synthesized, and a comparative study of their physicochemical properties is performed. The molecular masses and polydispersities of polyhydroxyalkanoates are found to be independent of their chemical structures. It is shown that the temperature characteristics and degrees of crystallinity of polyhydroxyalkanoates are affected by the chemical compositions of the monomers and their quantitative contents in the polymers. The incorporation of 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate units into the chain of poly(3-hydroxybutyrate) decreases its melting point and thermal degradation temperature relative to these parameters of a homogeneous poly(3-hydroxybutyrate) sample (175 ± 5°C and 275 ± 5°C, respectively). The higher the content of the second monomer units in the poly(3-hydroxybutirate) chain, the greater the changes. The degrees of crystallinity of polyhydroxyalkanoate copolymers are generally lower than that of poly(3-hydroxybutyrate) (75 ± 5%). The effect on the ratio of the amorphous and crystalline phases of the copolymer samples becomes more pronounced in the series 3-hydroxy-valerate-3-hydroxyhexanoate-4-hydroxybutyrate. The prepared samples exhibit different properties ranging from rigid thermoplastic materials to engineering elastomers.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) have attracted the attention of academia and industry because of their plastic-like properties and biodegradability. However, practical applications as a commodity material have not materialized because of their high production cost and unsatisfactory mechanical properties. PHAs are also believed to have high-value applications as an absorbable biomaterial for tissue engineering and drug-delivery devices because of their biocompatibility. However, research in these areas is still in its very early stages. The main problem faced by proponents of PHAs is the lack of a niche area where PHAs will be the most desired material in terms of its function during use rather than because of its eco-friendly virtues after use. Here, we report on the oil-absorbing property of PHA films and its potential applications. By comparing with some of the existing commercial products, the potential application of PHAs as cosmetic oil-blotting films is revealed for the first time. Besides having the ability to rapidly absorb and retain oil, PHA films also have a natural oil-indicator property, showing obvious changes in opacity following oil absorption. Surface analysis revealed that the surface structures such as porosity and smoothness exert great influence on the rapid oil-absorption properties of the PHA films. These newly discovered properties could be exploited to create a niche area for the practical applications of PHAs.  相似文献   

8.
This article reviews various methods of modifying the bulk and surface properties of poly(lactic acid) (PLA) so that the polymer may be used as a drug carrier in a drug delivery system (DDS) and as a cell scaffold in tissue engineering. Copolymerization of lactide with other lactone-type monomers or monomers with functional groups such as malic acid, copolymerization of lactide with macromolecular monomer such as poly(ethylene glycol) (PEG) or dextran, as well as blending polylactide and natural derivatives and other methods of bulk modification are discussed. Surface modifications of PLA-type copolymers, such as surface coating, chemical modification, and plasma treatment are described. Cell culture technology proves the efficiency of bulk and surface modification and the potential application of PLA in tissue engineering.  相似文献   

9.
FUNCTIONAL POLYHYDROXYALKANOATES SYNTHESIZED BY MICROORGANISMS*   总被引:8,自引:0,他引:8  
Many bacteria have been found to synthesize a family of polyesters termed polyhydroxyalkanoate, abbreviated asPHA. Some interesting physical properties of PHAs such as piezoelectricity, non-linear optical activity, biocompatibility andbiodegradability offer promising applications in areas such as degradable packaging, tissue engineering and drag delivery.Over 90 PHAs with various structure variations have been reported and the number is still increasing. The mechanicalproperty of PHAs changes from brittle to flexible to elastic, depending on the side-chainlength of PHA. Many attempts havebeen made to produce PHAs as biodegradable plastics using various microorganisms obtained from screening naturalenvironments, genetic engineering and mutation. Due to the high production cost, PHAs still can not compete with the non-degradable plastics, such as polyethylene and polypropylene. Various processes have been developed using low cost rawmaterials for fermentation and an inorganic extraction process tbr PHA purification. However, a super PHA production strainmay play the most critical role for any large-scale PHA production. Our recent study showed that PHA synthesis is acommon phenomenon among bacteria inhabiting various locations, especially oil-contaminated soils. This is very importantfor finding a suitable bacterial strain for PHA production. In fact, PHA production strains capable of rapid growth and rapidPHA synthesis on cheap molasses substrate have been found on molasses contaminated soils. A combination of novelproperties and lower cost will allow easier commercialization of PHA for many applications.  相似文献   

10.
聚羟基脂肪酸酯生物合成的研究进展   总被引:2,自引:0,他引:2  
聚羟基脂肪酸酯 (PHA)是原核微生物在碳、氮营养失衡的情况下 ,作为碳源和能源贮存而合成的一类热塑性聚酯。它除了具有与化学合成高分子相似的性质外 ,还具有一般化学合成高分子没有的性质 ,如生物可降解性、生物相容性、压电性、光学活性等特殊性质 ,因而具有广阔的应用前景。国内外已对PHA进行了大量的研究。本文主要综述了近二、三年来国内外对PHA生物合成的研究进展  相似文献   

11.
用活性污泥生物合成聚羟基烷酸酯的结构表征   总被引:3,自引:0,他引:3  
聚β-羟基烷酸酯 ( PHA)是一类具有生物相容性、光学活性、热塑性和完全生物降解性的生物高分子 ,有巨大的应用前景 [1] .PHA的结构通式为 O CRH CH2 CO ,R为不同链长的饱和或不饱和的烷基 ,可通过微生物发酵进行合成 [2 ,3] .利用污水中的有机物和活性污泥中可积累 PHA的混合微生物群生物合成 PHA,能大大降低 PHA的成本 ,变废为宝 ,是近几年 PHA研究的新热点 [4 ,5] .用不同菌种和不同碳源合成的 PHA的结构有较大的差异 ,因污水成分复杂 ,所得 PHA是多种饱和与非饱和羟基烷酸酯的混杂共聚物 .本工作以某纺织厂活性污泥为混…  相似文献   

12.
Polyhydroxyalkanoates (PHAs) are biodegradable, biocompatible polyesters and very attractive candidates for biomedical applications as materials for tissue engineering. They have a hydrophobic character, but some are able to spread at the air-water interface to form monomolecularly thin films (Langmuir monolayers). This is a very convenient model to analyze PHA self-assembly in two dimensions and to study their molecular interactions with other amphiphilic compounds, which is very important considering compatibility between biomaterials and cell membranes. We used the Langmuir monolayer technique and Brewster angle microscopy to study the properties of poly([R]-3-hydroxy-10-undecenoate) (PHUE) films on the free water surface in various experimental conditions. Moreover, we investigated the interactions between the polymer and one of the main biomembrane components, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The addition of lipid to a polymer film does not change the monolayer phase behavior; however, the interactions between these two materials are repulsive and fall in two composition-dependent regimes. In summary, this is the first systematic study of the monolayer behavior of PHUE, thus forming a solid basis for a thorough understanding of material interactions, in particular in the context of biomaterials and implants.  相似文献   

13.
Unlike polyhydroxyalkanoates (PHAs) copolymers, the controlled and efficient synthesis of PHA terpolymers from triglycerides and fatty acids are yet to be established. This study demonstrates the production of P(3HB-co-3HV-co-3HHx) terpolymer with a wide range of 3HV monomer compositions from mixtures of crude palm kernel oil and 3HV precursors using a mutant Cupriavidus necator PHB4 transformant harboring the PHA synthase gene (phaC) of a locally isolated Chromobacterium sp. USM2. The PHA synthase of Chromobacterium has an unusually high affinity towards 3HV monomer. P(3HB-co-3HV-co-3HHx) terpolymers with 3HV monomer composition ranging from 2 to 91 mol% were produced. Generation of 3HHx monomers was affected by the concentration and feeding time of 3HV precursor. P(3HB-co-24 mol% 3HV-co-7 mol% 3HHx) exhibited mechanical properties similar to that of common low-density polyethylene. P(3HB-co-3HV-co-3HHx) terpolymers with a wide range of 3HV molar fraction had been successfully synthesized by adding lower concentrations of 3HV precursors and using a PHA synthase with high affinity towards 3HV monomer.  相似文献   

14.
Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.  相似文献   

15.
This study describes the biosynthesis and thermal degradation of medium-chain-length polyhydroxyalkanoate (PHA), focusing on 2-alkenoic acids as a recyclable carbon source. Using metabolically engineered Escherichia coli, PHA consisting of 3-hydroxydecanoate (3HD) was synthesized from 2-decenoic acid. Solvent cast film of poly(3HD) [P(3HD)] was transparent and showed thermal property similar to that of polycaprolactone. In addition, the use of various 2-alkenoic acids (C6-C12) resulted in production of PHAs with over 95 mol% of the corresponding single monomer units. The pyrolysis product of P(3HD) was dominantly 2-decenoic acid used for the P(3HD) biosynthesis. This demonstrates the feasibility of PHA recycling via 2-alkenoic acids, which act as pyrolysis products and raw materials for PHA biosynthesis.  相似文献   

16.
Biosynthesis of polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyalkanoates (3HAs) of 4 to 10 carbon atoms was examined in metabolically engineered Escherichia coli strains. When the fadA and/or fadB mutant E. coli strains harboring the plasmid containing the Pseudomonas sp. 61-3 phaC2 gene and the Ralstonia eutropha phaAB genes were cultured in Luria-Bertani (LB) medium supplemented with 2 g/L of sodium decanoate, all the recombinant E. coli strains synthesized PHAs consisting of C4, C6, C8, and C10 monomer units. The monomer composition of PHA was dependent on the E. coli strain used. When the fadA mutant E. coli was employed, PHA containing up to 63 mol% of 3-hydroyhexanoate was produced. In fadB and fadAB mutant E. coli strains, 3-hydroxybutyrate (3HB) was efficiently incorporated into PHA up to 86 mol%. Cultivation of recombinant fadA and/or fadB mutant E. coli strains in LB medium containing 10 g/L of sodium gluconate and 2 g/L of sodium decanoate resulted in the production of PHA copolymer containing a very high fraction of 3HB up to 95 mol%. Since the material properties of PHA copolymer consisting of a large fraction of 3HB and a small fraction of medium-chain-length 3HA are similar to those of low-density polyethylene, recombinant E. coli strains constructed in this study should be useful for the production of PHAs suitable for various commercial applications.  相似文献   

17.
聚芳醚酮树脂的分子设计与合成及性能   总被引:1,自引:0,他引:1  
聚芳醚酮树脂是20世纪发展起来的重要特种工程塑料.因其优良的耐热、耐腐蚀、耐摩擦及生物相容性好等特点,在国防军工、武器装备、航空航天、电子、汽车、机械、石油工业、核能及理疗卫生等高技术领有广泛的应用.此类材料大都采用双酚单体和双氟单体通过A2+B2型亲核缩聚反应制备.这类聚合物的分子结构对材料的性能影响较大,一般情况下分子链由醚、酮、苯三元规整结构构成时,聚合物为半结晶态;然而,当分子结构中存在侧基或其他非规整结构往往破坏聚合物的结晶结构,聚合物呈现无定型态.半结晶聚芳醚酮聚合物具有非常优异的耐热、耐化学稳定性一般作为结构型材料使用;无定型聚芳醚酮具有良好的加工性能,并且可进行一些功能化成为一类优异的功能型材料.本文从结构与性能关系出发,介绍了聚芳醚酮树脂种类,聚芳醚酮树脂的发展历程及合成方法;探讨了聚芳醚酮材料结构与性能关系;总结了功能性聚芳醚酮材料的前沿进展;最后结合实际展望了聚芳醚酮的应用发展方向.  相似文献   

18.
近年来,随着对高分子材料功能化研究的深入,合成了许多具有特殊性能的聚芳醚酮.聚芳醚酮是一类综合性能优异的半结晶性特种工程塑料,在分子链中引入氟官能团可降低聚合物的介电常数.然而,不对称强极性氟的引入增加了聚合物分子的极性,不利于进一步降低介电常数,且在高温加工时容易放出氟化氢.因此,无氟、低氟的低介电高分子材料将会有很好的发展前景.  相似文献   

19.
Electrochemical copolymerization of 9,10-dihydrophenanthrene and 3-methylthiophene was successfully achieved in boron trifluoride diethyl etherate by direct anodic oxidation of the monomer mixtures. The structure and properties of the copolymers were investigated with ultraviolet–visible, Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, fluorescence spectra, and thermal analysis. The novel copolymers had the advantages of both poly(9,10-dihydrophenanthrene) and poly(3-methylthiophene), such as good electrochemical behavior, good mechanical properties, and high electrical conductivity. Fluorescence spectroscopy studies revealed that the copolymers had good fluorescence properties, and the emitting properties of the copolymer could be parameters by changing the feed ratio of the monomer mixtures during the electrochemical polymerization.  相似文献   

20.
We present a method to make continuous multi‐material structures from a monomer solution that becomes a soft hydrogel when exposed to blue light and a hard solid when exposed to UV light. We show that the material can be varied between a hard epoxy material to a several hundred times softer poly(ethylene glycol)‐diacrylate material. Moreover, the elastic properties of the material depend on both the wavelength of and exposure time of the light, which is used to produce a material with an elasticity gradient. We expect our material to find use in a range of fields, with immediate applications as 2D sheets with tunable mechanical properties for cell durotaxis studies, and 3D stereolithographically printed tissue mimicks, for example, for disease models and tissue engineering. Spatially resolved photo‐polymerization of a mixture of epoxy and acrylate monomers can be used to make multi‐material structure, with unique freedom to polymerize each monomer individually. The elastic compressive properties of the material are shown to be fully tunable from <100 kPa to >20 MPa depending on the light exposure time. This is used to make a functionally graded continuous material with a large variation in elastic properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1195–1201  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号