首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Differently to most chemically synthesized medical materials, polyhydroxyalkanoates (PHAs) are intracellular carbon and energy storage granules, which is a family of natural bio-polymers synthesized by microorganism's materials. Due to excellent biocompatibility reasonable biodegradability and versatile material difference, PHAs are well medical biomaterials candidates for applications in tissue engineering and drug delivery, including commercial PHB, PHBV, PHBHHx, PHBVHHx, P34HB and few uncommercial PHAs. Electrospinning nanofibers with the size of 10–10,000 nm can improve the mechanical properties and decrease the crystallinity of PHA, meanwhile simulate the structure and function of native extracellular matrix of cells. Hence, PHAs electrospinning nanofibers as engineered scaffolds have been widely used for tissue engineering scaffolds in cardiovascular, vascular, nerve, bone, cartilage and skin; also, as carriers for application in drug delivery system. In this review, we highlight the extraction and properties of medical PHAs from natural or engineered microorganism, and microstructure, current manufacturing techniques and medical applications of electrospinning nanofibers of PHAs. Moreover, the current challenges and prospects of PHAs electrospinning nanofibers are discussed rationally, providing an insight into developing vibrant fields of PHAs electrospinning nanofibers-based biomedicine.  相似文献   

2.
FUNCTIONAL POLYHYDROXYALKANOATES SYNTHESIZED BY MICROORGANISMS*   总被引:8,自引:0,他引:8  
Many bacteria have been found to synthesize a family of polyesters termed polyhydroxyalkanoate, abbreviated asPHA. Some interesting physical properties of PHAs such as piezoelectricity, non-linear optical activity, biocompatibility andbiodegradability offer promising applications in areas such as degradable packaging, tissue engineering and drag delivery.Over 90 PHAs with various structure variations have been reported and the number is still increasing. The mechanicalproperty of PHAs changes from brittle to flexible to elastic, depending on the side-chainlength of PHA. Many attempts havebeen made to produce PHAs as biodegradable plastics using various microorganisms obtained from screening naturalenvironments, genetic engineering and mutation. Due to the high production cost, PHAs still can not compete with the non-degradable plastics, such as polyethylene and polypropylene. Various processes have been developed using low cost rawmaterials for fermentation and an inorganic extraction process tbr PHA purification. However, a super PHA production strainmay play the most critical role for any large-scale PHA production. Our recent study showed that PHA synthesis is acommon phenomenon among bacteria inhabiting various locations, especially oil-contaminated soils. This is very importantfor finding a suitable bacterial strain for PHA production. In fact, PHA production strains capable of rapid growth and rapidPHA synthesis on cheap molasses substrate have been found on molasses contaminated soils. A combination of novelproperties and lower cost will allow easier commercialization of PHA for many applications.  相似文献   

3.
Polyhydroxyalkanoates (PHAs) have attracted the attention of academia and industry because of their plastic-like properties and biodegradability. However, practical applications as a commodity material have not materialized because of their high production cost and unsatisfactory mechanical properties. PHAs are also believed to have high-value applications as an absorbable biomaterial for tissue engineering and drug-delivery devices because of their biocompatibility. However, research in these areas is still in its very early stages. The main problem faced by proponents of PHAs is the lack of a niche area where PHAs will be the most desired material in terms of its function during use rather than because of its eco-friendly virtues after use. Here, we report on the oil-absorbing property of PHA films and its potential applications. By comparing with some of the existing commercial products, the potential application of PHAs as cosmetic oil-blotting films is revealed for the first time. Besides having the ability to rapidly absorb and retain oil, PHA films also have a natural oil-indicator property, showing obvious changes in opacity following oil absorption. Surface analysis revealed that the surface structures such as porosity and smoothness exert great influence on the rapid oil-absorption properties of the PHA films. These newly discovered properties could be exploited to create a niche area for the practical applications of PHAs.  相似文献   

4.
Biodegradability patterns of two PHAs: a polymer of 3-hydroxybutyric acid (3-PHB) and a copolymer of 3-hydroxybutyric and 3-hydroxyvaleric acids (3-PHB/3-PHV) containing 11 mol% of hydroxyvalerate, were studied in the tropical marine environment, in the South China Sea (Nha Trang, Vietnam). No significant differences have been observed between degradation rates of 3-PHB and 3-PHB/3-PHV specimens; it has been found that under study conditions, biodegradation is rather influenced by the shape of the polymer item and the preparation technique than by the chemical composition of the polymer. Biodegradation rates of polymer films in seawater have been found to be higher than those of compacted pellets. As 3-PHB and 3-PHB/3-PHV are degraded and the specimens lose their mass, molecular weight of both polymers is decreased, i.e. polymer chains get destroyed. The polydispersity index of the PHAs grows significantly. However, the degree of crystallinity of both PHAs remains unchanged, i.e. the amorphous phase and the crystalline one are equally disintegrated. PHA-degrading microorganisms were isolated using the clear-zone technique, by inoculating the isolates onto mineral agar that contained PHA as sole carbon source. Based on the 16S rRNA analysis, the PHA-degrading strains were identified as Enterobacter sp. (four strains), Bacillus sp. and Gracilibacillus sp.  相似文献   

5.
Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.  相似文献   

6.
Polyhydroxyalkanoates (PHAs) are biodegradable, biocompatible polyesters and very attractive candidates for biomedical applications as materials for tissue engineering. They have a hydrophobic character, but some are able to spread at the air-water interface to form monomolecularly thin films (Langmuir monolayers). This is a very convenient model to analyze PHA self-assembly in two dimensions and to study their molecular interactions with other amphiphilic compounds, which is very important considering compatibility between biomaterials and cell membranes. We used the Langmuir monolayer technique and Brewster angle microscopy to study the properties of poly([R]-3-hydroxy-10-undecenoate) (PHUE) films on the free water surface in various experimental conditions. Moreover, we investigated the interactions between the polymer and one of the main biomembrane components, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The addition of lipid to a polymer film does not change the monolayer phase behavior; however, the interactions between these two materials are repulsive and fall in two composition-dependent regimes. In summary, this is the first systematic study of the monolayer behavior of PHUE, thus forming a solid basis for a thorough understanding of material interactions, in particular in the context of biomaterials and implants.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.  相似文献   

8.
Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Bacterial polyhydroxyalkanoates (PHAs) are a unique class of biodegradable polymers because of their biodegradability in ambient environments and structural diversity enabled by side-chain groups. However, the biosynthesis of PHAs is slow and expensive, limiting their broader applications as commodity plastics. To overcome such limitation, the catalyzed chemical synthesis of bacterial PHAs has been developed, using the metal-catalyzed stereoselective ring-opening (co)polymerization of racemic cyclic diolides (rac-8DLR, R=alkyl group). In this combined experimental and computational study, polymerization kinetics, stereocontrol, copolymerization characteristics, and the properties of the resulting PHAs have been examined. Most notably, stereoselective copolymerizations of rac-8DLMe with rac-8DLR (R=Et, Bu) have yielded high-molecular-weight, crystalline isotactic PHA copolymers that are hard, ductile, and tough plastics, and exhibit polyolefin-like thermal and mechanical properties.  相似文献   

10.
Bacterial polyhydroxyalkanoates (PHAs) are a unique class of biodegradable polymers because of their biodegradability in ambient environments and structural diversity enabled by side‐chain groups. However, the biosynthesis of PHAs is slow and expensive, limiting their broader applications as commodity plastics. To overcome such limitation, the catalyzed chemical synthesis of bacterial PHAs has been developed, using the metal‐catalyzed stereoselective ring‐opening (co)polymerization of racemic cyclic diolides (rac‐8DLR, R=alkyl group). In this combined experimental and computational study, polymerization kinetics, stereocontrol, copolymerization characteristics, and the properties of the resulting PHAs have been examined. Most notably, stereoselective copolymerizations of rac‐8DLMe with rac‐8DLR (R=Et, Bu) have yielded high‐molecular‐weight, crystalline isotactic PHA copolymers that are hard, ductile, and tough plastics, and exhibit polyolefin‐like thermal and mechanical properties.  相似文献   

11.
Polyhydroxyalkanoates (PHAs) are well-known biodegradable plastics produced by various bacterial strains, whose major drawback is constituted by the high cost of their synthesis. Producing PHAs from mixed microbial cultures and employing organic wastes as a carbon source allows us to both reduce cost and valorize available renewable resources, such as food waste and sewage sludge. However, different types of pollutants, originally contained in organic matrices, could persist into the final product, thus compromising their safety. In this work, the exploitation of municipal wastes for PHA production is evaluated from the environmental and health safety aspect by determining the presence of polycyclic aromatic hydrocarbons (PAHs) in both commercial and waste-based PHA samples. Quantification of PAHs by gas chromatography-mass spectrometry on 24 PHA samples obtained in different conditions showed very low contamination levels, in the range of ppb to a few ppm. Moreover, the contaminant content seems to be dependent on the type of PHA stabilization and extraction, but independent from the type of feedstock. Commercial PHA derived from crops, selected for comparison, showed PAH content comparable to that detected in PHAs derived from organic fraction of municipal solid waste. Although there is no specific regulation on PAH maximum levels in PHAs, detected concentrations were consistently lower than threshold limit values set by regulation and guidelines for similar materials and/or applications. This suggests that the use of organic waste as substrate for PHA production is safe for both the human health and the environment.  相似文献   

12.
Microbial poly(3-hydroxyalkanoates) (PHAs) with fluorinated phenoxy side groups were produced by Pseudomonas putida when fluorophenoxyalkanoic acids were used as carbon sources. 11-(2-Fluorophenoxy)undecanoic acid (2FPUDA), 11-(3-fluorophenoxy)undecanoic acid (3FPUDA), 11-(4-fluorophenoxy)undecanoic acid (4FPUDA), 11-(2,4-difluorophenoxy)undecanoic acid (2,4DFPUDA), 11-(2,4,6-trifluorophenoxy)undecanoic acid (2,4,6TFPUDA), and 11-(2,3,4,5,6-pentaflurophenoxy)undecanoic acid (2,3,4,5,6PFPUDA) were used as carbon sources in the present study. When cells were grown with 2,4DFPUDA, the production of homo poly(3-hydroxy-5-(2,4-difluorophenoxy)pentanoate) was confirmed by NMR and GC/MS analyses. Fluorine atoms inserted into the side chain of the PHA dramatically affected its physical properties. In marked contrast to medium chain length (MCL) PHA, this fluorinated PHA was opaque, cream colored, and possessed greater crystallinity and a higher melting point (∼100 °C) than did the other MCL PHAs. Surface contact angle evaluation revealed that the PHA with two fluorine atoms possessed water-shedding properties. The number of substituted fluorine atoms in the carbon source affected cell growth and difluorine-substituted phenoxyalkanoic acids reduced cell growth, and polymer production compared to non-substituted phenoxyalkanoic acids. No polymeric materials were obtained using either 2,4,6TFPUDA or 2,3,4,5,6PFPUDA.  相似文献   

13.
Biotechnological studies towards the biosynthesis of polyhydroxyalkanoates (PHAs) biopolyesters have extensively progressed through the development of various metabolic engineering strategies. Historically, efficient PHA production has been achieved using the fermentation technology of naturally occurring PHA-producing bacteria based on external substrate manipulation (1st generation), and subsequent reinforcement with recombinant gene technology (2nd generation). More recently, "enzyme evolution" is becoming the 3rd generation approach for PHA production. A break-through in the chemical synthesis of macromolecules with desirable properties was achieved by the development of prominent chemical catalysts via "catalyst evolution", as represented by a series of Ziegler-Natta catalysts. Thus, one can easily accept the concept that the molecular evolution of the biocatalysts (enzymes) relevant to PHA synthesis will provide us with a chance to create novel PHA materials with high performance. The first trial of an in vitro enzyme evolution in PHA biosynthesis was reported by our group in 2001. The following literature data, as well as our own experimental results devoted to this new approach, have been accumulated over a short time. This review article focuses specifically on the concept and current case studies of the application of "enzyme evolution" to PHA biosynthesis.  相似文献   

14.
Summary: Their biodegradable properties make polyhydroxyalkanoates (PHAs) ideal candidates for innovative applications. Many studies have been primarily oriented to poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and afterwards to blends of PHAs with synthetic biodegradable polymers, such as poly(ε-caprolactone) (PCL). Medical and pharmaceutical devices require sterilization and γ irradiation could provide a proper alternative since it assures storage stability and microbiological safety. This contribution presents the effect of γ irradiation on the mechanical and thermal properties and on the biodegradation of PHB, PHBV and a commercial PHB/PCL blend. Samples, prepared by compression moulding, were irradiated in air at a constant dose rate of 10 kGy/h, from 10 to 179 kGy. Polymer chain scission was assessed by changes in the molecular weight, thermal properties and tensile behaviour. The correlation between absorbed dose and changes in the mechanical properties and biodegradation is discussed in detail. The optimum dose to guarantee microbiological sterilization without damage of the structure or meaningful loss of the mechanical properties is also reported.  相似文献   

15.
Photocurable systems, which offer advantages such as microfabrication and in situ fabrication, have been widely used as dental restorative materials. Because the visible light-curable (VLC) system causes no biological damage, it is popular as a dental material and is being investigated by many researchers for other medical applications. Here, the principle of the VLC system is explained and recent progress in key components including photoinitiators, monomers, macromers, and prepolymers is discussed. Finally, biomedical applications for drug delivery and soft tissue engineering are reviewed. Considering the recent development of VLC systems, its importance in the field of medical applications is expected to continue to increase in the future.  相似文献   

16.
Synthetic pollutants are a looming threat to the entire ecosystem, including wildlife, the environment, and human health. Polyhydroxyalkanoates (PHAs) are natural biodegradable microbial polymers with a promising potential to replace synthetic plastics. This research is focused on devising a sustainable approach to produce PHAs by a new microbial strain using untreated synthetic plastics and lignocellulosic biomass. For experiments, 47 soil samples and 18 effluent samples were collected from various areas of Punjab, Pakistan. The samples were primarily screened for PHA detection on agar medium containing Nile blue A stain. The PHA positive bacterial isolates showed prominent orange–yellow fluorescence on irradiation with UV light. They were further screened for PHA estimation by submerged fermentation in the culture broth. Bacterial isolate 16a produced maximum PHA and was identified by 16S rRNA sequencing. It was identified as Stenotrophomonas maltophilia HA-16 (MN240936), reported first time for PHA production. Basic fermentation parameters, such as incubation time, temperature, and pH were optimized for PHA production. Wood chips, cardboard cutouts, plastic bottle cutouts, shredded polystyrene cups, and plastic bags were optimized as alternative sustainable carbon sources for the production of PHAs. A vital finding of this study was the yield obtained by using plastic bags, i.e., 68.24 ± 0.27%. The effective use of plastic and lignocellulosic waste in the cultivation medium for the microbial production of PHA by a novel bacterial strain is discussed in the current study.  相似文献   

17.
Enzymatic degradation of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) (PHBA) biopolyester consisting of 3-hydroxybutyrate (HB) and 15 mol% medium-chain-length 3-hydroxyalkanoates (HA) was studied using a polyhydroxyalkanoates (PHA) depolymerase produced by Ralstonia pickettii T1. It was found that PHBA films did not lose their weight after 25 h of depolymerase treatment. In contrast, three commercially available PHAs including poly-3-hydroxybutyrate (PHB), poly(3-hydroxybutyrate-19 mol% 3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-19 mol% 3-hydroxyhexanoate) (PHBHHx) lost 75%, 94% and 39% of their original weights. Slow degradation of PHBA was also confirmed by the absence of HA monomers, dimers or trimers as degradation products in their depolymerase solution compared with abundance of degradation products released by the other three PHAs under the same condition. Surface erosion of PHBA was only observed after 48 h of enzymatic treatment compared with those of PHB, PHBV and PHBHHx which already had obvious surface changes after 7.5 h of same treatment. Although the crystallinities of PHB, PHBV, PHBHHx and PHBA were in the order PHB > PHBV > PHBHHx > PHBA valued at 55.8%, 47.8%, 45.9% and 40.9%, respectively, the order of degradability was PHBV > PHB > PHBHHx > PHBA. It can be proposed that PHA enzymatic degradation using this depolymerase was structure related: longer side-chain PHA including PHBHHx and PHBA was less favorable for the depolymerase degradation, longer the side chain, less the biodegradation.  相似文献   

18.
Straightforward and versatile routes to functionalize the surface of poly(3‐hydroxyalkanoate) (PHA) electrospun fibers for improving cell compatibility are reported under relatively mild conditions. The modification of nanofibrous PHAs is implemented through two different methodologies to introduce epoxy groups on the fiber surface: (1) preliminary chemical conversion of double bonds of unsaturated PHAs into epoxy groups, followed by electrospinning of epoxy‐functionalized PHAs blended with nonfunctionalized PHAs, (2) electrospinning of nonfunctionalized PHAs, followed by glycidyl methacrylate grafting polymerization under UV irradiation. The latter approach offers the advantage to generate a higher density of epoxy groups on the fiber surface. The successful modification is confirmed by ATR‐FTIR, Raman spectroscopy, and TGA measurements. Further, epoxy groups are chemically modified via the attachment of a peptide sequence such as Arg‐Gly‐Asp (RGD), to obtain biomimetic scaffolds. Human mesenchymal stromal cells exhibit a better adhesion on the latter scaffolds than that on nonfunctionalized PHA mats. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 816–824  相似文献   

19.
ABSTRACT

Polyhydroxyalkanoates (PHAs) are intracellular aliphatic polyesters synthesized as energy reserves, in the form of water-insoluble, nano-sized discrete and optically dense granules in cytoplasm by a diverse bacteria and some archae under conditions of limiting nutrients in the presence of excess carbon source. Bacteria synthesize different PHAs from coenzyme A thioesters of respective hydroxyalkanoic acid, and degrade intracellularly for reuse and extracellularly in natural environments by other microorganisms. In vivo, PHAs exist as amorphous mobile liquid and water-insoluble inclusions but in vitro, exhibit material and mechanical properties, ranging from stiff and brittle crystalline to elastomeric and molding, similar to petrochemical thermoplastics. Further, they are hydrophobic, isotactic, biocompatible and exhibit piezoelectric properties. But as commodity plastics their applications are limited by high production cost, low yield, in vivo degradation, complexity of technology and difficulty of extraction. Therefore, to replace the conventional plastic with PHAs, it is prerequisite to standardize the PHA production systems.  相似文献   

20.
Calcium phosphate materials are widely used as bone-like scaffolds or coating for metallic hip and knee implants due to their excellent biocompatibility, compositional similarity to natural bone and controllable bioresorbability. Local delivery of drugs or osteogenic factors from scaffolds and implants are required over a desired period of time for an effectual treatment of various musculoskeletal disorders. Curcumin, an antioxidant and anti-inflammatory molecule, enhances osteoblastic activity in addition to its anti-osteoclastic activity. However, due to its poor solubility and high intestinal liver metabolism, it showed limited oral efficacy in various preclinical and clinical studies. To enhance its bioavailability and to provide higher release, we have used poly (ε-caprolactone) (PCL), poly ethylene glycol (PEG) and poly lactide co glycolide (PLGA) as the polymeric system to enable continuous release of curcumin from the hydroxyapatite matrix for 22 days. Additionally, curcumin was incorporated in plasma sprayed hydroxyapatite coated Ti6Al4V substrate to study in vitro cell material interaction using human fetal osteoblast (hFOB) cells for load bearing implants. MTT cell viability assay and morphological characterization by FESEM showed highest cell viability with samples coated with curcumin-PCL-PEG. Finally, 3D printed interconnected macro porous β-TCP scaffolds were prepared and curcumin-PCL-PEG was loaded to assess the effects of curcumin on in vivo bone regeneration. The presence of curcumin in TCP results in enhanced bone formation after 6 weeks. Complete mineralized bone formation increased from 29.6% to 44.9% in curcumin-coated scaffolds compared to pure TCP. Results show that local release of curcumin can be designed for both load bearing or non-load bearing implants with the aid of polymers, which can be considered an excellent candidate for wound healing and tissue regeneration applications in bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号