首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
Retention prediction models for a group of pyrazines chromatographed under reversed-phase mode were developed using multiple linear regression (MLR) and artificial neural networks (ANNs). Using MLR, the retention of the analytes were satisfactorily described by a two-predictor model based on the logarithm of the partition coefficient of the analytes (log P) and the percentage of the organic modifier in the mobile phase (ACN or MeOH). ANN prediction models were also derived using the predictors derived from MLR as inputs and log k as outputs. The best network architecture was found to be 2-2-1 for both ACN and MeOH data sets. The optimized ANNs showed better predictive properties than the MLR models especially for the ACN data set. In the case of the MeOH data set, the MLR and ANN models have comparable predictive performance.  相似文献   

4.
5.
6.
Laser Induced Breakdown Spectroscopy (LIBS) is an advanced analytical technique for elemental determination based on direct measurement of optical emission of excited species on a laser induced plasma. In the realm of elemental analysis, LIBS has great potential to accomplish direct analysis independently of physical sample state (solid, liquid or gas). Presently, LIBS has been easily employed for qualitative analysis, nevertheless, in order to perform quantitative analysis, some effort is still required since calibration represents a difficult issue. Artificial neural network (ANN) is a machine learning paradigm inspired on biological nervous systems. Recently, ANNs have been used in many applications and its classification and prediction capabilities are especially useful for spectral analysis. In this paper an ANN was used as calibration strategy for LIBS, aiming Cu determination in soil samples. Spectra of 59 samples from a heterogenic set of reference soil samples and their respective Cu concentration were used for calibration and validation. Simple linear regression (SLR) and wrapper approach were the two strategies employed to select a set of wavelengths for ANN learning. Cross validation was applied, following ANN training, for verification of prediction accuracy. The ANN showed good efficiency for Cu predictions although the features of portable instrumentation employed. The proposed method presented a limit of detection (LOD) of 2.3 mg dm− 3 of Cu and a mean squared error (MSE) of 0.5 for the predictions.  相似文献   

7.
8.
Artificial Neural Networks (ANNs) have seen an explosion of interest over the last two decades and have been successfully applied in all fields of chemistry and particularly in analytical chemistry. Inspired from biological systems and originated from the perceptron, i.e. a program unit that learns concepts, ANNs are capable of gradual learning over time and modelling extremely complex functions. In addition to the traditional multivariate chemometric techniques, ANNs are often applied for prediction, clustering, classification, modelling of a property, process control, procedural optimisation and/or regression of the obtained data. This paper aims at presenting the most common network architectures such as Multi-layer Perceptrons (MLPs), Radial Basis Function (RBF) and Kohonen's self-organisations maps (SOM). Moreover, back-propagation (BP), the most widespread algorithm used today and its modifications, such as quick-propagation (QP) and Delta-bar-Delta, are also discussed. All architectures correlate input variables to output variables through non-linear, weighted, parameterised functions, called neurons. In addition, various training algorithms have been developed in order to minimise the prediction error made by the network. The applications of ANNs in water analysis and water quality assessment are also reviewed. Most of the ANNs works are focused on modelling and parameters prediction. In the case of water quality assessment, extended predictive models are constructed and optimised, while variables correlation and significance is usually estimated in the framework of the predictive or classifier models. On the contrary, ANNs models are not frequently used for clustering/classification purposes, although they seem to be an effective tool. ANNs proved to be a powerful, yet often complementary, tool for water quality assessment, prediction and classification.  相似文献   

9.
10.
Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.  相似文献   

11.
Artificial neural networks (ANNs) were successfully developed for the modeling and prediction dielectric constant of different ternary liquid mixtures at various temperatures (?10°C?≤?t?≤?80°C) and over the complete composition range (0?≤?x 1,?x 2,?x 3?≤?1). A three-layered feed forward ANN with architecture 7-16-1 was generated using seven parameters as inputs and its output is dielectric constant of media. It was found that properly selected and trained neural network could fairly represent the dependence of dielectric constant of different ternary liquid mixtures on temperature and composition. For the evaluation of the predictive power of the generated ANN, an optimized network was applied for predicting the dielectric constant in the prediction set, which were not used in the modeling procedure. Squared correlation coefficient (R 2) and root mean square error for prediction set are 0.9997 and 0.2060, respectively. The mean percent deviation (MPD) for the property in the prediction set is 0.8892%. The results show nonlinear dependence of dielectric constant of ternary mixed solvent systems on temperature and composition is significant.  相似文献   

12.
13.
14.
The development of retention prediction models for the seven ginsenosides Rf, Rg1, Rd, Re, Rc, Rb2, and Rb1 on a polyamine-bonded stationary phase in hydrophilic interaction chromatography (HILIC) is presented. The models were derived using multiple linear regression (MLR) and artificial neural network (ANN) using the logarithm of the retention factor (log k) as the dependent variable for four temperature conditions (0, 10, 25, and 40 degrees C). Using stepwise MLR, the retention of the analytes in all the temperature conditions was satisfactorily described by a two-predictor model wherein the predictors were the percentage of ACN (%ACN) in the mobile phase and local dipole index (LDI) of the compounds. These predictors account for the contribution of the solute-related variable (LDI) and the influence of the mobile phase composition (%ACN) on the retention behavior of the ginsenosides. A comparison of the models derived from both MLR and ANN revealed that the trained ANNs showed better predictive abilities than the MLR models in all temperature conditions as demonstrated by their higher R(2) values for both training and test sets and lower average percentage deviation of the predicted log k from the observed log k of the test compounds. The ANN models also showed excellent performance when applied to the prediction of the seven ginsenosides in different sample matrices.  相似文献   

15.
Measurement precision based on homogeneous and accurate standard samples has been reported to result in significant improvement in the sensitivity and accuracy of the quantitative analysis of polymorphic mixtures. The purpose of this study was to further improve the accuracy of the quantitation based on data processing by artificial neural networks (ANNs), using such high quality standard samples. Homogeneous powder mixtures of - and γ-forms of indomethacin (IMC) at various ratios (0–50% -form content) were subjected to X-ray powder diffractometry. The two diffraction peaks selected as the best combination in multiple linear regression (MLR) were used in the ANN with an extended Kalman filter as a training algorithm. The results obtained by ANN had better predictive accuracy at lower contents (0–5%) compared to those of MLR. ANNs for the diffraction data based on high quality standard samples provide an extremely precise and accurate quantification for polymorphic mixtures.  相似文献   

16.
17.
The particle size distribution of a solid product can be crucial parameter considering its application to different kinds of processes. The influence of particle size on near infrared (NIR) spectra has been used to develop effective alternative methods to traditional ones in order to determine this parameter. In this work, we used the chemometrical techniques partial least squares 2 (PLS2) and artificial neural networks (ANNs) to simultaneously predict several variables to the rapid construction of particle size distribution curves. The PLS2 algorithm relies on linear relations between variables, while the ANN technique can model non-linear systems.Samples were passed through sieves of different sieve opening in order to separate several size fractions that were used to construct two types of particle size distribution curves. The samples were recorded by NIR and their spectra were used with PLS2 and ANN to develop two calibration models for each. The correlation coefficients and relative standard errors of prediction (RSEP) have been used to assess the goodness of fit and accuracy of the results.The four calibration models studied provided statistically identical results based on RSEP values. Therefore, the combined use of NIR spectroscopy and PLS2 or ANN calibration models allows determining the particle size distributions accurately. The results obtained by ANN or PLS2 are statistically similar.  相似文献   

18.
Artificial Neural Networks (ANNs) with Extended Delta-Bar-Delta (EDBD) back propagation learning algorithm have been developed to predict the standard enthalpy and entropy of 87 acyclic alkanes. Molecular weight, boiling point and density of the compounds were used as input parameters. The network's architecture and parameters were optimized to give maximum performances. The best network was a 3-6-2 ANN, and the optimum learning epoch was about 1320. The results show that the maximum relative errors of enthalpy and entropy are less than 3%. They reveal that the performances of ANNs for predicting the enthalpy and entropy of alkanes are satisfying.  相似文献   

19.
In this study, the RP-HPLC method was investigated for the separation of citalopram and its four impurities by use of statistical experimental design. Initially, the influence of different experimental conditions (buffer pH, flow rate, and column temperature) on the chromatographic behavior of citalopram and its four impurities was investigated by use of partial least squares regression (PLSR) and multilayer perceptron (MLP) artificial neural networks (ANNs) trained by back-propagation. The developed models and the corresponding response surface plots were used to select the optimal HPLC conditions, buffer pH 7.0, flow rate 1.0 mL/ min, and column temperature 25 degrees C, for an efficient separation of citalopram and its four impurities. The elaborated HPLC method was found to be linear, specific, sensitive, precise, accurate, and robust. Retention times of citalopram and its impurities, obtained with the developed HPLC method, and the computed molecular parameters of the examined compounds were used in a quantitative structure retention relationship (QSRR) study. The PLSR and ANN algorithms were applied for the development of the QSRR methods. The MLP-two layers-ANN-QSRR model with root mean square error of prediction 0.105 and r(2) (observed versus predicted) 0.978 was selected. Since many different reaction conditions are applied for the synthesis of citalopram, different impurities and degradation products can be formed. Therefore, the developed QSRR model can be extended to the prediction of the retention times with the other citalopram impurities, degradation products, and metabolites.  相似文献   

20.
The non-linear relationships between the contents of ginsenoside Rg1, Rb2, Rd and Panax notoginseng saponins(PNS) in Panax notoginseng root herb and the near infrared(NIR) diffuse reflectance spectra of the herb were established by means of artificial neural networks(ANNs). Four three-layered perception feed-for-ward networks were trained with an error back-propagation algorithm. The significant principal components of the NIR spectral data matrix were utilized as the input of the networks. The networks architecture and parameters were selected so as to offer less prediction errors. Relative prediction errors for Rg1, Rb1, Rd and PNS obtained with the optimum ANN models were 8.99%, 6.54%, 8.29%, and 5.17%, respectively, which were superior to those obtained with PLSR methods. It is verified that ANN is a suitable approach to model this complex non-linearity. The developed method is fast, non-destructive and accurate and it provides a new efficient approach for determining the active components in the complex system of natural herbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号