首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
Water‐soluble chitin (half‐deacetylated chitin) was prepared from chitosan by N‐acetylation with acetic anhydride. Alginate/water‐soluble chitin blend fibers were prepared by spinning their mixture solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2 and ethanol. The structure and properties of the blend fibers were studied with the aids of infrared spectra (IR), X‐ray diffraction (XRD) and scanning electron microscopy (SEM). structure analysis indicated good miscibility existed between alginate and water‐soluble chitin, due to the strong interaction from the intermolecular hydrogen bonds and electrostatic interactions. Best values for the dry tensile strength and breaking elongation were obtained when the water‐soluble chitin content was 30 wt%. The wet tensile strength and breaking elongation decreased with the increase of water‐soluble chitin content. The introduction of water‐soluble chitin in the blend fiber can improve the water‐retention properties of the blend fiber compared to pure alginate fiber. The fibers treated with aqueous solution of silver nitrate have good antibacterial activity to Staphylococcus aureus.  相似文献   

2.
提出一种全新的缺陷修复的方法,即将聚丙烯腈基(PAN)碳纤维T300在液态丙烯腈低聚物(LAN)中浸渍后,再进行预氧化和碳化热处理,可以将T300的拉伸强度提高25%.应用二维小角X射线散射(SAXS)法可以计算出LAN修复缺陷前后T300微孔缺陷的长度(L)、横截面尺寸(lp)、取向角(Beq)、相对体积(Vrel)的变化,结果表明碳纤维的拉伸性能越好,微孔的长度、取向角、相对体积含量越小.T300拉伸性能的提高是由于缺陷修复的结果.应用BET比表面积法、扫描电子显微镜(SEM)表征LAN修复缺陷前后T300的比表面积以及表面形貌的变化,结果表明,T300在LAN中浸渍并经过预氧化和碳化热处理,比表面积变小,表面缺陷明显减少.进一步验证LAN对碳纤维中的微孔缺陷具有修复作用.应用X射线光电子能谱(XPS)法表征LAN修复前后T300表面化学成分的变化,结果表明,LAN修复后含氧官能团(C―OH,C=O,HO―C=O)显著增加,有利于增强碳纤维与树脂基体之间的相互作用,从而提高碳纤维的力学性能.  相似文献   

3.
ORMOSILs have been prepared in the series TMOSx·MTMS(100 – x) (where TMOS is tetramethoxysilane; MTMS is methyltrimethoxysilane; x is mol% silane with respect to total silane for 0 x 100) by means of acid catalyzed, sol-gel processing. After drying at 60°C, small bulk samples were obtained of excellent optical clarity. Powder X-ray diffraction (XRD) patterns, in the range of 5 to 60°2, were compared with that of fused silica. All the prepared samples were amorphous. Fused silica exhibits one broad peak, d2 centered at d-spacing 4.12 Å. For the TMOS100 silica xerogel, the analogous broad peak had shifted slightly, to be centered at 3.88 Å; and remained in about the same position as x was decreased for the series TMOSx·MTMS(100 – x). In addition, a second, broad peak, d1, was observed for the ORMOSIL series centered at the d-spacing 8.7 Å for MTMS100 (i.e., x = 0) and increasing smoothly as x was increased, reaching 11.3 Å for x = 70, and >11.3 Å for x > 70. The intensity of d1 was found to have trebled, relative to the intensity of d2, on increasing the organic character of the matrix from TMOS70·MTMS30 to MTMS100.The d2 peak appearing at about 4 Å for both fused silica and the ORMOSILs is assumed to be associated with the spacing between silicon atoms connected by means of an oxygen bridge. The Si–O–Si angle for silica xerogels is known to depend upon the nature of the sol-gel processing and is bigger than that of fused silica.The d1 peak may be associated with the spacing between silicons attached to methyl groups and indicative of channels of methyl groups in the structure. Alternatively, the d1 peak may have its origin in a preferred, discrete structural unit in the matrix for instance cubane based on a octameric silicon arrangement.  相似文献   

4.
Hybrid silica gels (HSGs) were prepared according to an acid-catalyzed sol–gel method using tetraethoxysilane (TEOS) as silica precursors and colloidal suspension of nontronite clay mineral. The silica surfaces were hydrophilic in relation to silanol groups and it was of interest to increase hydrophobicity by substituting silanol by methylated groups through addition of methyltrimethoxysilane (MTMS) in a molar ratio TEOS: MTMS equaled to 1:0.4. The aim of the present paper was to predict effects of water content in soil on HSG hydration by characterizing HSG water desorption and sorption with dynamic vapor sorption device. From desorption kinetics, TEOS HSGs showed higher ability to water surface evaporation and diffusion compared to the TEOS–MTMS HSGs. After complete dehydration, water sorption isotherms Type II were obtained for HSGs. Isotherms were fitted with Brunauer-Emmett-Tellet (BET) and Guggenheim, Andersen, de Boer (GAB) models. The higher monolayer values of water adsorbed for HSGs containing nontronite suggested a major influence of clay minerals on overall hydration. However, the water binding energy depended upon the nature of silica matrix indicating weaker bonds with methylated groups at solid surface in MTMS–TEOS HSGs. Apparent water sorption diffusivities, Dapp were calculated according to Fick’s diffusion model. Maximal Dapp values were obtained in the range 0.2??.3 aw after which the Dapp decreased in relation with capillary condensation.  相似文献   

5.
Polymethyl(alkoxy)siloxane copolymers, poly(MTES‐co‐TEOS), and poly(MTMS‐co‐TMOS), are prepared by acid‐catalyzed controlled hydrolytic co‐polycondensation of methyl(trialkoxy)silane MeSi(OR)3 (R = Et (MTES) and Me (MTMS)) and tetra‐alkoxysilane Si(OR)4 (R = Et (TEOS) and Me (TMOS)), respectively. The products are purified by fractional precipitation to provide polymethyl(alkoxy)siloxane copolymers with molecular weight 1000–10,000 (poly(MTES‐co‐TEOS)) or 1700–100,000 (poly(MTMS‐co‐TMOS)) that are stable to self‐condensation. These polymers are soluble in common organic solvents except for hexane, and form flexible and transparent free‐standing films with a tensile strength of 4.0–10.0 MPa. The structure of the polymethyl(alkoxy)siloxane copolymers is thought to be a random or a block co‐polymer. They are found to provide coating films with an adhesive strength up to 10, a refractive index of 1.36–1.40, and a dielectric constant of 3.5–3.6. The products also show better weathering stability than polyethoxysiloxane due to the hydrolytic polycondensation of TEOS. Field emission‐scanning electron micrography analysis reveals that coating films are composed of a micro‐phase separated structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4732–4741  相似文献   

6.
A simple method for nanocrystalline cellulose (NCC)/fluorinated polyacrylate was developed by RAFT‐mediated surfactant‐free emulsion polymerization, in which the nanocomposites formed a core‐shell spherical morphology. The influence of the content of NCC‐g‐(PAA‐b‐PHFBA) (AA was acrylic acid, HFBA was hexafluorobutyl acrylate) on the properties of latex and film were systematically studied. The monomer conversion, the tensile strength, and water–oil repellency of film increased first and then decreased, the latex particle size decreased first and then decreased, when the content of NCC‐g‐(PAA‐b‐PHFBA) increased from 1 to 6 wt %. Elongation at break and thermal stability distinctly decreased when the content of NCC‐g‐(PAA‐b‐PHFBA) gradually increased. XPS showed that the fluorine‐containing groups well concentrated at the film–air interfaces during the annealing process. SEM analysis revealed that the treated fiber had a rugged surface, and the treated fabric had an excellent water repellency. In addition, this green grafting method in water offered a new perspective for the fabrication of exceptional NCC‐based nanocomposites with NCC as the core and also helped to promote the potential applicability of NCC in a range of multipurpose applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1305–1314  相似文献   

7.
The mechanical properties of fiber molded samples and monofilaments of thermally treated 73/27 4‐hydroxy benzoic acid/2‐hydroxy‐6‐napthoic acid (HBA/HNA) copolyester have been investigated using both tensile tests and flexural three‐point bending tests. The thermal treatment which involves step annealing at temperatures well below the degradation temperature of the 73/27 system has been shown to produce branching and crosslinking in the crystalline regions of these polymers. The flexural strength of the degraded sample decreased up to 10% of the untreated fiber molded sample. In case of tensile strength of a single fiber, the values for the degraded samples are in line with the untreated fiber in the low draw ratio region while a slight decrease in tensile strength was observed in the high draw ratio region. The decrease in flexural and tensile strength appears to result from a small amount of branching and crosslinking reactions which arise uniquely in the orthorhombic phase of the 73/27 HBA/HNA copolyester. The branching and crosslinking would prevent the molecular orientation along flow direction in the molten state. For the fiber molded samples of degraded 73/27 HBA/HNA the destruction of the chain regularity along fiber axis direction was observed by wide‐angle X‐ray diffraction. The 73/27 HBA/HNA copolyester including 1 wt% of a crosslinked oligomer was used to simulate the branching and crosslinking of the degraded 73/27 HBA/HNA copolyester. Plots of tensile strength versus draw ratio were similar for the degraded 73/27 HBA/HNA and a copolyester which included 1 wt% of a crosslinkable oligomer. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The conditioned and wet tensile strength resp. modulus of solvent-spun and viscose-type cellulose fibres was correlated with their crystallite and amorphous orientation factor. It was found that the extrapolation of these tensile properties to the maximum degree of orientation results in identical values of the tensile strength resp. modulus in the conditioned and water swollen state. Proportional to a decreasing orientation factor the loss of strength and modulus by swelling increases. Additionally, a positive correlation was found between the wet tensile strength resp. modulus and the intensity of the interference of the equatorial small-angle x-ray scattering measured in the swollen state. This interference is caused by the elementary fibrils. The intensity of this interference is a measure for the fibrillar character of the swollen fibre structure. The fibrillability of the fibres suspended in water correlates positively with the crystallite orientation factor.Extracts presented at the Conference Cellulose '91 December 2–6, 1991 New Orleans, USA  相似文献   

9.
Fluorinated thin layers were created on chemithermomechanical pulp (CTMP) sisal paper surfaces with fluorotrimethylsilane (FTMS) radio frequency-plasma conditions. It was found that the FTMS-discharge environments caused implantation of fluorine and –Si(CH3) x groups into the surface layers of the paper substrates. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and Electron Spectroscopy for Chemical Analysis, as well as Atomic Force Microscopy and Scanning Electron Microscopy analyses revealed a smooth surface for the FTMS plasma-treated paper, apparently covered completely with a cross-linked polymerized network. Although the plasma reaction takes place with the cellulose, hemicelluloses and lignin, it appears that the chemical linkage is mainly to the lignin component on the CTMP paper surface by means of mainly C–O–Si–F, with some C–Si–F structures. The CTMP fibers apparently have a high lignin surface concentration. The water absorption for the plasma-treated CTMP paper was reduced from greater than 300 to 17 g of water/m2 and the contact angle increased from less than 15° to greater than 120° the strength properties were only slightly reduced and the brightness was essentially unaffected with the FTMS plasma treatment.  相似文献   

10.
Liquid ammonia was used to treat films of nanofibrillated cellulose (NFC), trimethylammonium-modified NFC (TMA-NFC), and their composites with vermiculite. Crystal structure, mechanical properties, water vapor permeation and water vapor adsorption of the resulting materials were investigated. Upon treatment, the crystal structure of (TMA-)NFC both in presence and absence of vermiculite changed from cellulose I to III. With the exception of TMA-NFC/vermiculite composites, pronounced effects on the addressed mechanical properties arose after exposure of the materials to ammonia. Furthermore, treatment of composite films with ammonia led to a distinct decrease in water vapor permeation. Remarkably, TMA-NFC/vermiculite composites films show the best water vapor barrier properties, highest tensile strength and highest elastic modulus after treatment with liquid ammonia. This is regarded to be at least partially a consequence of electrostatic attraction between the positively charged ammonium groups in TMA-NFC and the anionic silicate layers of vermiculite. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

11.
Chitosan–poly(vinyl alcohol), CS–PVA, blended membranes were prepared by solution casting of varying proportions of CS and PVA. The blend membranes were then crosslinked interfacially with trimesoyl chloride (TMC)/hexane. The physiochemical properties of the blend membranes were determined using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile test and contact angle measurements. Results from ATR-FTIR show that TMC has crosslinked the blend membranes successfully, and results of XRD and DSC show a corresponding decrease in crystallinity and increase in melting point, respectively. The crosslinked CS–PVA blend membranes also show improved mechanical strength but lower flexibility in tensile testing as compared to uncrosslinked membranes. Contact angle results show that crosslinking has decreased the surface hydrophilicity of the blend membranes. The blend membrane properties, including contact angle, melting point and tensile strength, change with a variation in the blending ratio. They appear to reach a maximum when the CS content is at 75 wt%. In general, the crosslinked blend membranes show excellent stability during the pervaporation (PV) dehydration of ethylene glycol–water mixtures (10–90 wt% EG) at different temperatures (25–70 °C). At 70 °C, for 90 wt% EG in the feed mixture, the crosslinked blend membrane with 75 wt% CS shows the highest total flux of 0.46 kg/(m2 h) and best selectivity of 986. The blending ratio of 75 wt% CS is recommended as the optimized ratio in the preparation of CS–PVA blend membranes for pervaporation dehydration of ethylene glycol.  相似文献   

12.
Summary A highly unsaturated triacetylenic hydrocarbon, 1,3,5-triethynylbenzene, was synthesized, and the oxidative polycondensation of this gave a three-dimensional oligomer containing alternating diacetylenic groups and aromatic nuclei in its molecule.For Communications 1–5 see [1–5].  相似文献   

13.
This paper presents sorption properties of a selective water sorbent based on mesoporous KSKG silica gel as a host matrix and calcium chloride as a hygroscopic salt. Sorption isobars, isochores and isotherms at T=20–150°C and vapor partial pressures of 8–133 mbar clearly showed two types of water sorption: 1) the formation of solid crystal hydrates at low amounts N of sorbed water, and 2) vapor absorption mainly by the salt solution at higher N. Sorption properties of CaCl2 crystal hydrates were found to change strongly due to their impregnation into mesoporous silica gel, whereas the solution confinement to the mesopores did not change its water sorption properties with respect to the bulk solution. Isosteric sorption heat was measured to depend on water sorption and to change from 62.5 kJ/mol for solid hydrates to 42.2–45.6 kJ/mol for solution.  相似文献   

14.
The application of small angle neutron scattering (SANS) to the characterisation of sol–gel hosts containing biomolecules offers the opportunity to explore the relationship between gel structure and catalyst. A model system involving the immobilisation of Candida antarctica lipase B (CALB) was investigated.Gels were produced by fluoride-catalysed hydrolysis of fixed ratios of tetramethylorthosilicate (TMOS) and methyltrimethoxysilane (MTMS). Phase separation between the enzyme and the evolving sol–gel matrix was minimised by incorporating glycerol into the sol–gel precursor solution. The potential stabilising effect of the NaF catalyst upon the enzyme was also investigated. Scattering studies were conducted on both immobilised lipase, and lipase in free solution. Scattering studies on free enzyme provided evidence of multiple populations of enzyme aggregates and showed that choice of solvent affected the degree of aggregation. Both NaF and glycerol affected neutron scattering, indicating changes in lipase conformation. Increasing glycerol concentration increased the degree of aggregation and produced differences in solvent packing on the surface of protein molecules. Initial evidence from SANS data indicated that the presence of the enzyme during gel formation conferred structural changes on the gel matrix. Modelling the effect of sol–gel encapsulation on lipase requires comparison of data from free enzyme to the immobilised form. Removal of the enzyme from the sol–gel structure, post gelation, is necessary to better characterise the modified matrix. This methodological problem will be the subject of future investigations.  相似文献   

15.
A new surface modification method of hydroxyapatite nanoparticles (n‐HA) by surface grafting reaction of L ‐lactic acid oligomer with carboxyl terminal (LAc oligomer) in the absence of any catalyst was developed. The LAc oligomer with a certain molecular weight was directly synthesized by condensation of L ‐lactic acid. Surface‐modified HA nanoparticles (p‐HA) were attested by Fourier transformation infrared spectroscopy, 31P MAS‐NMR, and thermal gravimetric analysis (TGA). The results showed that LAc oligomer could be grafted onto the n‐HA surface by forming a Ca carboxylate bond. The grafting amount of LAc oligomer was about 13.3 wt %. The p‐HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p‐HA/PLLA composite containing 15 wt % of p‐HA were 68.7 MPa and 2.1 GPa, respectively, while those of the n‐HA/PLLA composites were 43 MPa and 1.6 GPa, respectively. The p‐HA/PLLA composites had better thermal stability than n‐HA/PLLA composites and neat PLLA had, as determined by isothermal TGA. The hydrolytic degradation behavior of the composites in phosphate buffered saline (PBS, pH 7.4) was investigated. The p‐HA/PLLA composites lost their mechanical properties more slowly than did n‐HA/PLLA composites in PBS because of their reinforced adhesion between the HA filler and PLLA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5177–5185, 2005  相似文献   

16.
A novel styrene monomer with a highly branched perfluoroalkenyl group was readily prepared in good yield from hexafluoropropene trimer and hydroxystyrene. The fluorinated monomer radically polymerized yielded a white powdery polymer which was soluble in fluorinated solvents and had good water repellency. The polymer had a unique high glass transition temperature despite the introduction of perfluorinated groups. The monomer was copolymerized with styrene, and their monomer reactivity ratios were determined.  相似文献   

17.
A procedure has been developed to coat micron-sized poly(styrene-co-3-trimethoxysilyl propyl methacrylate) microspheres with a smooth layer of polysiloxane by the hydrolysis and condensation of methyl trimethoxylsilane (MTMS). Firstly, polystyrene microspheres containing silanol groups were prepared by conventional dispersion polymerization using 3-(trimethoxysilyl) propyl methacrylate (MPS) as a functional comonomer in an ethanol/water medium. Secondly, the synthesis of the polysiloxane shell was carried out using a sol–gel process of MTMS. The thickness of the shells can be easily varied with different copolymer seeds and MTMS feed ratio. When we used copolymer particles with 2.00 μm diameter as seeds, the thickness of the polysiloxane shells can be varied from 0.10 to 0.18 μm. The core/shell structure of the composite microspheres was characterized by transmission electron microscope (TEM).  相似文献   

18.
海藻酸钠-硫酸软骨素共混膜的结构及性能研究   总被引:1,自引:0,他引:1  
利用溶液共混法成功制备了新型生物膜材料-硫酸软骨素共混膜,通过红外光谱、X-射线衍射、原子吸收光谱和扫描电镜对共混膜的结构进行了表征,并测定了不同配比共混膜的抗张强度、断裂伸长率,吸水率,同时考察了介质pH值和离子强度对共混膜吸水率的影响。结果表明:共混膜中海藻酸钠、软骨素之间具有较强的相互作用和良好的相容性,共混膜具有良好的力学性能。作为一种潜在的生物材料可望在生物医学领域得到应用。  相似文献   

19.
Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.  相似文献   

20.
Synthesis of (co)polyimides from aromatic dianhydrides (pyromellitic dianhydride (PMDA), symmetric 3,3′,4,4′-biphenyltetracarboxylic dianhydride (sBPDA)) and diamines (4,4′-oxydianiline (ODA), p-phenylenediamine (PDA)) commonly used for the production of commercial polyimides, as well as the preparation of their nanocomposites with SiO2 nanoparticles were performed with the aim to find ways to control technical performance of polyimides. The (co)polyimide films prepared under mild thermal imidization conditions were analyzed by FTIR, WAXD, DSC and TG, and characterized by transition temperatures and the temperatures of 5% and 10% mass loss, as well as tensile parameters.Films of PMDA/sBPDA–ODA copolyimides at the ambient temperature had a 20% higher ultimate strength and exhibited a higher tensile modulus than the reference polyimide (PMDA–ODA). However, lowering the transition temperature of the polyimide by partial substitution of an sBPDA monomeric unit for PMDA resulted in lowering the modulus at higher temperatures. The best performance was exhibited by semi-crystalline films of sBPDA–ODA/PDA copolyimide, which had a 35% higher ultimate strength and a 64% higher elongation at break at the ambient temperature than the reference polyimide (sBPDA–PDA), and also retained the strength and exhibited a 200% higher elongation at a temperature of 200 °C.Unexpectedly, the elongation at break of PMDA–ODA based (co)polyimide nanocomposites with hydrophobic SiO2 nanoparticles was greater than that of the baseline (co)polyimides. It was neither the case with PMDA–ODA nanocomposites with hydrophilic SiO2 nanoparticles, nor with sBPDA–PDA (co)polyimide based nanocomposites with hydrophobic SiO2 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号