首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure has been developed to coat micron-sized polystyrene (PS) spheres with a smooth layer of polysiloxane by a sol–gel process of methyl trimethoxylsilane (MTMS) without using silane coupling agents. The thickness of the shells can be easily varied with different polystyrene seeds and methyl trimethoxysilane feed ratio. When we used PS particles with diameters of 2.09 μm prepared by conventional dispersion polymerization as seeds, the thickness of the polysiloxane shells can be varied from 0.11 to 0.21 μm. The particle size, size distribution, thermal decomposition, and solvent resistance were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), size analyzer, and TG, respectively.  相似文献   

2.
 Micron-sized, monodisperse polystyrene (PS)/glycidyl methacrylate–divinylbenzene copolymer core/shell composite particles having epoxy groups in the shells were produced by seeded dispersion copolymerization of glycidyl methacrylate and divinylbenzene in an ethanol/water medium with 1.65-μm-sized, monodisperse PS seed particles. By chemical modifications of epoxy groups with sodium hydrogensulfite and dimethylamine, composite polymer particles having sulfonate and dimethylamino groups, respectively, in the shells were prepared. Received: 13 September 2000 Accepted: 31 January 2001  相似文献   

3.
Microsized spherical core-shell particles consisting of hydrocarbon cores encapsulated into fluoropolymer shells are obtained in supercritical carbon dioxide. Paraffins serve as a core material, while the polymer shell is formed from ultradispersed polytetrafluoroethylene. The morphology and molecular structure in the bulk and on the surface of the particles and the influence of conditions of particle formation on the shell thickness and the thermal properties of the materials are studied. The materials are composites comprised of paraffin cores coated with shells of loosened globular fluoropolymer particles with sizes of 0.2–1.7 μm. The shells is built of low- and high-molecular-mass fractions consisting of CF3(CF2)nCF3 molecular chains with different lengths. The shell thickness is governed by preparation conditions, exposure time, and the percentage of the polymer in the initial dispersion.  相似文献   

4.
Microcapsules containing n-octadecane were successfully fabricated by an in-situ polymerization process with melamine-formaldehyde (MF) prepolymer and a hydrolyzed copolymer of styrene and maleic anhydride (SMA) as shell materials. To achieve a long service time of microcapsules containing phase change materials (microPCMs), the compactness of shells was improved by adding the MF prepolymer twice. The mechanism of this method was a two-step coacervation (TSC) under the help of hydrolyzed SMA compared to a one-step coacervation (OSC). To understand the influence of both coacervations, properties of shells were investigated in terms of morphologies, density, thickness, and stability by means of scanning electron microscopy (SEM), transmission electron microscopy, and thermal gravimetric analysis (TGA). The data of shells thickness were achieved from the cross-section SEM images. It shows that the average thickness of shells from two kinds of process are 0.1 μm. The density and stability in water of shells fabricated by TSC are both higher than that of shells by OSC. TGA curves show the expected microPCMs of TSC losing weight from 200 to 400 °C. The release curves, relationship between time and logarithmic residual weight of core, show there are two decrease-linear steps after curve regression. It can be concluded from all these results that the TSC method may be a promising method leading to a compact shell structure for various application.  相似文献   

5.
Poly(D,L-lactide) (PDLLA) microspheres with narrow diameter distribution were prepared by dispersion polymerization of D,L-lactide in xylene/heptane (1:2, v/v) using poly(dodecyl methacrylate)-g-poly(D,L-lactide) (PDMA-g-PDLLA) as a dispersion stabilizer. The particle diameters of PDLLA microspheres were controlled from 200 nm to 5 μm by altering the concentration and the graft chain number of PDMA-g-PDLLA. The effect of the copolymer composition on the particle diameter was investigated to clarify an important factor of the copolymer structure for the control of the particle diameter. As a result, it was necessary for anchor block in diblock copolymer as a dispersion stabilizer to have low solubility in the solution rather than the compatibility with particles. Moreover, we confirmed by dynamic light scattering measurement that PDMA-g-PDLLA formed micelles in the solution. In conclusion, it was clarified that PDLLA microspheres with a wide range of particle diameter were prepared due to the different kinetic stability of micelles.  相似文献   

6.
7.
Supercooling of micro- and nanoencapsulated phase change material is widely observed as their diameters depress to a limitation upon cooling. The aim of this study is to suppress the supercooling of nanoencapsulated n-octadecane (NanoC18) using a novel copolymer consisting of long n-alkyl side chains as shell. Nanoencapsulations of n-octadecane with various compositions of poly(methyl methacrylate-co-octadecyl methacrylate) copolymer as shells were carried out by means of miniemulsion polymerization. Fabrication, morphology, diameter distributions, phase change behaviours, and thermal stabilities of nanocapsules were investigated using Fourier transformed infrared spectroscopy, a field-emission scanning electron microscope, a transmission electron microscope, particle size distribution analysis, differential scanning calorimetry, and thermogravimetric analysis. The results indicate that a series of nanocapsules with core/shell structure and spherical shapes are fabricated with average diameters ranging from 373 to 398 nm. The average thickness of the shells is about 60 nm. All the NanoC18 crystallize into a stable triclinic phase via a metastable rotator phase (RI) from the liquid phase. The crystallization temperature of n-octadecane within poly(methyl methacrylate) nanocapsules is considerably lower than that in bulk phase. Supercooling is effectively suppressed using the comb-like copolymer with crystallizable n-octadecyl side chains as shell. Octadecyl methacrylate is not only employed as a reactive costabilizer to suppress the influence of Ostwald ripening during the formation of nanocapsules but also as a functional monomer in the composition of the copolymer shell in order to suppress the supercooling of NanoC18.  相似文献   

8.
Ambient-curable polysiloxane coatings were prepared by hydrolysis and condensation of 3-methacryloxypropylmethyldimethoxysilane (MPDS) and methyltriethoxysilane (MTES) and subsequently mixing with 3-aminopropyltriethoxysilane (APS). The structures of the as-obtained polysiloxane oligomers as well as the dried polysiloxane coatings on tinplate substrates were analyzed by FTIR and 29Si NMR. The mechanical properties of the coatings were thoroughly examined at both macro-level and micro-level using a pendulum hardness rocker, an impact tester, and a nanoindentation/nanoscratch instrument. Effects of the molar ratio of MPDS/MTES, the dosage of aqueous ammonia solution, and the catalytic condition on the structure of polysiloxane oligomers as well as the structure and mechanical properties of the polysiloxane coatings were investigated. The dried coatings with thickness of 15–26 μm are highly elastic. The hardness (Koenig hardness and microhardness), impact resistance and scratch resistance are mainly dependent on the condensation degree of polysiloxane coatings rather than on the organic component of the coatings. A proper pre-hydrolysis process or more APS is benefit for enhancing the mechanical strength of the polysiloxane coatings. Polysiloxane coatings with high hardness and excellent scratch resistance can be prepared preferentially at low molar ratio of MPDS/MTES.  相似文献   

9.
聚硅氧烷/丙烯酸酯核/壳复合胶乳的粒径分布与成核机理   总被引:12,自引:0,他引:12  
通过种子乳液法合成出具有高有机硅含量核 壳结构的聚硅氧烷 丙烯酸酯复合粒子 .研究了聚合方法、乳化剂浓度、引发剂浓度、单体滴加速度等工艺条件对复合乳液粒径尺寸、分布与形态的影响 ,并对复合乳液的成核机理进行了探讨 .研究表明 ,乳化剂浓度对乳液粒子的粒径分布和形态、结构有显著影响 ,引发剂浓度增加将使粒子粒径减小 ;相对一次投料法 ,种子乳液法生成的粒子分布窄 ,具有明显核壳结构 ,通过壳层单体滴加速度可以控制粒子的粒径尺寸和分布 ;而壳层丙烯酸酯聚合物主要是在聚硅氧烷种子表面的“过渡层”聚合、富集而成 .  相似文献   

10.
Macroporous microspheres of SAPO-34 (MAMISAPO-34) were fabricated using polystyrene spheres (PS, 2 μm) as hard template. Cubic SAPO-34 (1 μm) synthesized by the conventional hydrothermal method was mixed with kaolin, silica sol, aluminium phosphate sol, template, and deionized water. Spray drying was then performed to prepare 30–50 μm microspheres which were converted to macroporous SAPO-34 by post-hydrothermal and calcination treatments. For comparison, 30–50 μm non-macroporous microspheres (NOMISAPO-34) were also obtained without using PS. XRD, NH3-TPD, and SEM analyses were used to characterize the macroporous and non-macroporous SAPO-34. The results showed that MAMISAPO-34 was more crystalline and had more strong acid sites than NOMISAPO-34. When used in MTO (methanol to olefins) reactions, MAMISAPO-34 had better catalytic performance than NOMISAPO-34, because of its greater crystallinity.  相似文献   

11.
Hollow carbon microspheres (HCMs) are prepared in a sealed quartz tube via the reaction between ferrocene and ammonium bromide. The morphology and microstructure of the product are characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, focused ion beam workstation, transmission electron microscopy, and differential scanning calorimetry analysis. The diameter of the HCMs ranges from 1 to 13 μm and the thickness of shells ranges from 70 nm to 450 nm. It is concluded that the self-generated spherical droplets of iron amine bromide serve as the core templates for the formation of HCMs.  相似文献   

12.
A novel synthetic route to prepare polystyrene/SiO2 composite microparticles in supercritical carbon dioxide (scCO2) is presented. Silica particles with the size of 130 nm which were surface-modified with 3-(trimethoxysilyl) propyl methacrylate were used as seeds in the dispersion polymerization of styrene in the presence of a polymeric stabilizer, poly(1,1-dihydroheptafluorobutyl methacrylate-co-diisopropylaminoethyl methacrylate) to produce dry composite particles. The transmission electron microscopy analysis revealed that the composite microspheres contained several silica particles.  相似文献   

13.
The synthesis of functionalized magnetic polymer microspheres was described by a process involving (1) preparation of the monodisperse magnetic seeds according to a two-step procedure including the preparation of bilayer-oleic acid-coated Fe3O4 nanoparticles followed by soap-free emulsion polymerization with methyl methacrylate (MMA) and divinyl benzene (a cross-linking agent, DVB); (2) seeded emulsion polymerization proceeding under the continuous addition of glycidyl methacrylate (GMA) monomers in the presence of the magnetic PMMA seeds; and (3) chemical modification of the PGMA shells with ethylenediamine (EDA) to yield amino groups. As such, the magnetic poly(MMA-DVB-GMA) microspheres were prepared possessing monodispersity, uniform magnetic properties, and abundant surface amino groups. Then, the dendritic poly(amidoamine) (PAMAM) shells were coated on the magnetic particles on the basis of the Michael addition of methyl acrylate and the amidation of the resulting ester with a large excess of EDA, which could achieve generational growth under such uniform stepwise reactions. For improving the luminescence properties of the composite particles, fluorescein isothiocyanate, which is a popular organic dye, was reacted with the terminal -NH2 groups from the dendritic PAMAM shells, resulting in the formation of multifunctional microspheres with excellent photoluminescence, superparamagnetic, and pH-sensitive properties. In this case, it can be expected that an extension of the functionalization of these microspheres is to immobilize other target molecules onto the PAMAM shells to introduce other desired functions for potential chemical and biological applications.  相似文献   

14.
In this research, novel 3-(2-pyridyl)propyl methacrylate and 3-(3-pyridyloxy)propyl methacrylate monomers were synthesized and emulsion polymerized on colloidal polystyrene seeds, resulting in core-shell latex systems. The cores and the core-shell particles were characterized by static light scattering and scanning electron microscopy. Transmission electron microscopy was used to study the morphology of the core-shell particles. Monodisperse beads with a regular core-shell internal structure were found. The pyridine-functional shells were loaded with HAuCl4 and irradiated with UV light to reduce the salts to metallic gold. FTIR, UV-Vis, TEM and XPS were employed to monitor the metal loading and reduction processes. Core-shell systems, decorated with gold nanoparticles, were obtained.  相似文献   

15.
β-Mn2V2O7 microtubes with a length of 15–25 μm, 2.5–3.5 μm external diameter, and ∼0.4 μm wall thickness, as well as β-Mn2V2O7 hollow microspheres with an average outer diameter of 2 μm, were successfully synthesized in a suitable molar ratio of NH4VO3 and MnCO3 powders via a hydrothermal process. X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the products, and the magnetic susceptibility curve was also measured. In the whole process, the concentration of Mn2+ cations derived from MnCO3 dissolution plays a crucial role in the formation of β-Mn2V2O7 microtubes and hollow microspheres.  相似文献   

16.
Poly(vinyl acetate-methyl methacrylate) (VAc-MMA) copolymer microspheres were prepared using suspension polymerization at low temperature initiated with 2,2'-azobis(2,4-dimethyl valeronitrile) (ADMVN). The poly(VAc-MMA) copolymer microspheres can be used over a large area where homopolymers, polyvinyl acetate (PVAc) and methyl methacrylate (PMMA) microspheres are capable of being put to use. The prepared microspheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Obtained copolymer microspheres which have 200 μm average diameter and higher thermal stability than those of homopolymer.  相似文献   

17.
A procedure to obtain hollow colloidal particles has been developed using an emulsion templating technique. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysilane monomer and incorporated in a solid shell using tetraethoxysilane. Hollow shells were obtained by exchange of the core. The formation of the oil droplets was investigated using static light scattering and 29Si solution NMR, and the hollow shells were characterized by electron microscopy and static light scattering. Details on the composition of the shell material were obtained from energy-dispersive X-ray analysis and 29Si solid state NMR, revealing that the shells consist of a hybrid cross-linked network of silica and siloxane units. Confocal microscopy was used to show that the shells are permeable to small dye molecules. The thickness of the coating can be easily varied from a few nanometers upward. Depending on the ratio of shell thickness to particle radius, three types of hollow shells can be distinguished depending on the way in which they buckle upon drying. We designate them as microspheres, microcapsules, and microballoons. As a result of their monodispersity, these particles can be used for making 3D-ordered materials.  相似文献   

18.
A fiber forming PZT gel containing 58.5 wt% PZT was synthesized by using zirconium-n-propylate, titanium-iso-propylate, lead acetate and butoxyethanol. Unseeded PZT gels and gels containing 0.5 wt% PZT perovskite seeds (Ø = 200–300 nm) could be extruded through a monofilament nozzle (Ø = 100 m) at pressures between 50 and 150 bar, whereas PZT gels, containing 1 and 2 wt% PZT particles, were pressed through the nozzle at higher pressures (200–300 bar). The microstructure of unseeded and seeded (0.5, 1, 2 wt% PZT) PZT fibers was characterized by SEM. Unseeded fibers had three different shells at 450°C: an external dense shell (approx. 200 nm thick), a middle shell consisting of a porous structure (1.5m thick) and the center of the fiber, characterized by a matrix containing globular particles. At 700°C, a 200–250 nm thick and dense external shell and a porous fiber interior were be observed. 2 wt% of PZT seeds was necessary to densify the fiber completely. The seeds were located in the center of each PZT perovskite rosette.  相似文献   

19.
Colloidal polystyrene particles with surface epoxy groups have been synthesized through surfactant-free emulsion copolymerization of styrene with glycidyl methacrylate; and through copolymerization of glycidyl methacrylate (GMA) and methyl methacrylate as shells around existing polystyrene seed particles. We developed two titration methods to quantify the number of epoxy groups that survived the polymerization processes. The styrene-GMA copolymer particles were judged to be unsatisfactory as model colloidal materials due to their size polydispersity and unknown internal distribution of epoxy groups. The core-shell particles had high epoxy surface densities with at least 60% of the initial epoxy groups surviving the synthesis process. Transmission electron microscopy shows that the thickness of the epoxy-rich shell is less than expected based on the volume of monomers added, suggesting that some of the monomer forms water-soluble oligomers. Photon correlation spectroscopy measurements imply that the shell is swollen with water and consists of polymer configurations which extend out into solution. The morphological details vary consistently with the GMA content, and hence the hydrophilicity, of the shell polymer. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Hollow molecular imprinted polymer microspheres were prepared by distillation precipitation polymerization with (S)‐(+)‐ibuprofen (S‐IBF) as template molecule and acrylamide (AM) as functional monomer. Using the silicon dioxide (SiO2, 180 nm) modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) as the template microspheres, the molecular imprinted shells were coated on successfully (SiO2@MIPs). The thermosensitive SiO2@MIPs‐PNIPAM core‐shell microspheres were subsequently prepared by grafting the PNIPAM chains (Mn=1.21×104 g/mol, polydispersity index=1.30), which were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization, on the surface of SiO2@MIPs microspheres via the thiol‐ene click chemistry. The grafting density of PNIPAM brushes on the SiO2@MIPs microspheres was about 0.18 chains/nm2. After HF etching, the hollow imprinted microspheres were finally obtained. For thermosensitivity analysis, the phase transition temperatures of multifunctional nanoparticles were measured by DSL at 25°C and 45°C respectively, and the sizes of the microspheres changed by about 35 nm. The modified microspheres presented excellent controlled release property to S‐IBF, moreover about half amount of the adsorptions passed into acetonitrile‐water solution through the specific holes of imprinted shell at 25°C under vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号