首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Interaction of cis-[Pt(en)(H2O)2]2+ and [CuL(H2O)]2+, where L is 2-[bis(2-aminoethyl)amino]ethanol, with oxidized insulin B chain in molar ratio of 1 : 1, 1 : 2 and 1 : 3 at pH 2.5 and 40 degrees C has been investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). The results show that the binding sites of the two complexes with oxidized insulin B chain are terminal NH2, imidazole groups of His5 and His10. The hydrolytic cleavage studies show that the [CuL(H2O)]2+, upon a pendant hydroxyl group of the ligand, selectively cleaves the peptide bonds at Gly8-Ser9, Asn3-Gln4 and Phe1-Val2, and the cis-[Pt(en)(H2O)2]2+ only cleaves the peptide bond at His10-Leu11. This is the first report of cis-[Pt(en)(H2O)2]2+-promoted cleavage of His-X peptide bond.  相似文献   

2.
采用电喷雾质谱和串联质谱研究了氧化胰岛素B链与ZnCl2的键合作用并成功地确定了切割位点。质谱研究显示在pH值2.5及40 ℃条件下,Zn2+通过与氧化胰岛素B链的氨基酸侧链His5,His10和Arg22结合,选择性地水解了肽键Asn3-Gln4, His5-Leu6, Gly8-Ser9和Glu21-Arg22。  相似文献   

3.
The electrospray ionization mass spectrometry investigation showed that the binding sites of [ZnL]2+, where L is 2-[bis(2-aminoethyl)aminolethanol, with oxidized insulin B chain are Phe1, His5 and Arg22, which lead to the selective cleavages of the peptide bonds at Phe1-Val2, His5-Leu6, Glu21-Arg22, and Arg22-Gly23 of oxidized insulin B chain.  相似文献   

4.
The electrospray ionization mass spectrometry and tandem mass spectrometry investigation showed that the binding sites of Zn^2+ with oxidized insulin B chain are His 5, His 10, and Arg 22, which lead to the selective cleavages of the peptide bonds at Ash 3- Gin 4, His 5-Leu 6, Gly 8-Ser 9, and Glu 21-Arg 22 of oxidized insulin B chain.  相似文献   

5.
The composition and binding sites of cis-[Ru(II)(bpy)2]2+-bound sulfur-containing peptides of Met-Arg-Phe-Ala, glutathione and oxidized glutathione, and also histidine-containing peptide of oxidized insulin B chain, were investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). The composition of Ru(II)-containing peptides was precisely determined by ESI-MS, zoom scan and simulation of isotope distribution patterns. MS/MS analysis shows that, in sulfur-containing peptides, the Ru(II) complex prefers to anchor to a carboxyl group, although some other potential binding sites of thiol, thioether and N-terminal amino groups present in these peptides, and in oxidized insulin B chain, Ru(II) first anchors to His10, then either to the hydroxyl group of Thr27 or to the carboxyl group of Ala30. Its secondary structure and microenvironment surrounding the potential binding sites may affect the binding ability of cis-[Ru(II)(bpy)2]2+ to oxidized insulin B chain.  相似文献   

6.
Gas-phase ion/molecule reactions and collision-induced dissociation (CID) were conducted on [M + 4H]4+ of insulin chain B. This Fourier transform mass spectrometry work involved ions from the oxidized peptide (with two cysteic acid residues) and its reduced form (with two cysteine residues). Kinetic behavior during deprotonation and hydrogen/deuterium exchange reactions indicates that insulin B (ox) ions have two distinct structural types. In contrast, insulin B (red) ions have only one major reacting population, which has a more compact structure than the oxidized ions. No significant differences in fragmentation patterns for the two insulin B (ox) populations were observed when CID was performed as a function of deprotonating reaction time. However, markedly different fragmentation was found between [M + 4H]4+ of insulin B (ox) and (red). Therefore, the presence of cysteic acid groups in insulin B (ox) significantly impacts dissociation and presumably structure. This suggests that some insulin B (ox) ions are zwitterionic, with the five basic sites protonated and one cysteic acid group deprotonated. Molecular dynamics calculations revealed several viable structures that are consistent with the experimental results. For example, the most stable form of the reduced ion, which is unprotonated at the His10, is very compact and has lost the alpha-helix of native insulin. Low energy structures for the oxidized ions include a zwitterion with an intraionic interaction between anionic Cyx7 and cationic His10, as well as a nonzwitterionic conformer that lacks a proton at Phe1; both structures retain the alpha-helix. These structures may account for the two experimentally observed isomers, although others are possible. In addition, experiments on oxidized insulin B were conducted from methanolic solution, which may denature the conformation, and pure aqueous solution, which may leave a native conformation. These differences in solvent composition had no effect on the gas-phase results.  相似文献   

7.
The interaction of oxidized insulin B chain(B)with cis-[Pd-(en)Cl2](en=ethylenediamine),cis-[Pd-(dtco-3-OH)Cl2](dtco-3-OH=dithiacyclooctan-3-ol)and CuCl2 was studied by electrospray inass spectrometry.It is discovered that the binding of Pd(Ⅱ)complexes and the sites of cleavage are highly dependent on the secondary structure and local environment of B.The hydrolytic cleavage of denatured B by Pd(Ⅱ)complexes was monitored by HPLC.The reaction is regioselective and follows first order kinetics with half-life of 4.8 days at 40℃.Two amide bonds,i.e.at Leu6-Cys7 and at Gly8-Ser9,which are close to the two potential Pd(Ⅱ)binding sites His5 and His10,are selectively cleaved.In the case of Cu(Ⅱ)ion as promoter,only one cleavage site was observed which is located at Gly8-Ser9 bond.These results provide improved understanding on the design of artificial metallopeptidase.  相似文献   

8.
At the present, the term “glycoxidation” is recognized as the synergistic interaction between glycation and oxidative processes which, with the help of redox-active metals, consequently leads to the production of deleterious tissue modifications. The association between glycation and oxidation events is considered one of the major factors in the accumulation of non-functional damaged proteins, enhancing the oxidative damage at the cellular level. Because of the central role of insulin in the biology of diabetes, we investigated the site-specific oxidation of native and glycated insulin (mono, di, and tri-glycated forms), through metal-catalyzed oxidation, with a combination of liquid chromatography and mass spectrometry. With this approach we were able to identify the residues that were mainly oxidized, and peptide sequences resulting from oxidative cleavage of insulin. Tyrosine, phenylalanine, and cysteine were the main affected residues. Time-course analysis (0–48 h) of the oxidative damage enabled to detect more pronounced and earlier oxidative modifications in the case of glycated insulin. We also observed more severe oxidative damage as the number of glycation sites increased in insulin. These oxidative modifications included other oxidized residues, namely proline, histidine, valine, leucine, and glycine, which were shown to be carbonylated. In addition, we identified new sites of peptide cleavage with the formation of new fragments, derived mainly from chain B, which were both glycated and oxidatively modified. Peptide fragmentation occurred mainly between the residues phenylalanine, glycine, leucine, and tyrosine. Moreover, for diglycated and triglycated forms we observed further oxidative cleavage occurring in both chains, with oxidation and fragmentation of residues occurring near cysteine bridges, especially in chain A.  相似文献   

9.
Thio-ether bonds in the cysteinyl side chain of peptides, formed with the most commonly used cysteine blocking reagent iodoacetamide, after conversion to sulfoxide, releases a neutral fragment mass in a low-energy MS/MS experiment in the gas phase of the mass spectrometer [6]. In this study, we show that the neutral loss fragments produced from the mono-oxidized thio-ether bonds (sulfoxide) in peptides, formed by alkyl halide or double-bond containing cysteine blocking reagents are different under low-energy MS/MS conditions. We have evaluated the low-energy fragmentation patterns of mono-oxidized modified peptides with different cysteine blocking reagents, such as iodoacetamide, 3-maleimidopropionic acid, and 4-vinylpyridine using FTICR-MS. We propose that the mechanisms of gas-phase fragmentation of mono-oxidized thio-ether bonds in the side chain of peptides, formed by iodoacetamide and double-bond containing cysteine blocking reagents, maleimide and vinylpyridine, are different because of the availability of acidic beta-hydrogens in these compounds. Moreover, we investigated the fragmentation characteristics of mono-oxidized thio-ether bonds within the peptide sequence to develop novel mass-spectrometry identifiable chemical cross-linkers. This methionine type of oxidized thio-ether bond within the peptide sequence did not show anticipated low-energy fragmentation. Electron capture dissociation (ECD) of the side chain thio-ether bond containing oxidized peptides was also studied. ECD spectra of the oxidized peptides showed a greater extent of peptide backbone cleavage, compared with CID spectra. This fragmentation information is critical to researchers for accurate data analysis of this undesired modification in proteomics research, as well as other methods that may utilize sulfoxide derivatives.  相似文献   

10.
Oxidative modifications to amino acid side chains can change the dissociation pathways of peptide ions, although these variations are most commonly observed when cysteine and methionine residues are oxidized. In this work we describe the very noticeable effect that oxidation of histidine residues can have on the dissociation patterns of peptide ions containing this residue. A common product ion spectral feature of doubly charged tryptic peptides is enhanced cleavage at the C-terminal side of histidine residues. This preferential cleavage arises as a result of the unique acid/base character of the imidazole side chain that initiates cleavage of a proximal peptide bond for ions in which the number of protons does not exceed the number of basic residues. We demonstrate here that this enhanced cleavage is eliminated when histidine is oxidized to 2-oxo-histidine because the proton affinity and nucleophilicity of the imidazole side chain are lowered. Furthermore, we find that oxidation of histidine to 2-oxo-histidine can cause the misassignment of oxidized residues when more than one oxidized isomer is simultaneously subjected to tandem mass spectrometry (MS/MS). These spectral misinterpretations can usually be avoided by using multiple stages of MS/MS (MS(n)) or by specially optimized liquid chromatographic separation conditions. When these approaches are not accessible or do not work, N-terminal derivatization with sulfobenzoic acid avoids the problem of mistakenly assigning oxidized residues.  相似文献   

11.
A method for the isolation, identification and quantification of human insulin A and B chains by high-performance liquid chromatography (HPLC) is described. These chains were isolated from a peptide mixture produced by E. coli with modified genes obtained by genetic engineering. The method is based on the use of hydrophilic reagents, forming ion pairs in a reversed-phase column. Because some undesirable effects resulting from the use of phosphoric acid were observed, especially with the B chain, a new HPLC method was developed for each of the two human insulin chains. The use of trifluoroacetic acid as a counter ion for the A chain and of formic acid for the B chain led to the rapid isolation and purification of each chain by HPLC. The advantage of this method is that it provides a highly pure product, which was identified by polyacrylamide gel electrophoresis and amino acid analysis.  相似文献   

12.
Resonance assignments of the 1H spectrum of insulin are the basis on which to investigate its solution conformation by using NMR method. Owing to the complicated aggregation behaviour of the molecule to give broadened n. m. r. lines, only limited resonance assignments have been reported. S-sulfonated A and B chains of insulin gave 1H spectra with good resolutions. Based on the 500 MHz absolute 2D-COSY spectrum and 400 MHz phase sensitive DQF-COSY, Relayed-COSY and NOESY spectra of B chain recorded in D2O, all of the spin system identifications of the non-labile protons in the S-sulfonated B chain of insulin were reported including the specific resonance assignments of eight residues: B3Asn, B9Ser, B16Tyr, B22Arg, B26Tyr, B27Thr, B28Pro and B29Lys. The pK values of B16 and B26 tyrosine are 10.65 and 10.60 respectively from pH titration.  相似文献   

13.
The conformational preferences and prolyl cis-trans isomerization of oxidized and reduced Ac-Cys-Pro-Phe-Cys-NH2 (CPFC peptides) have been carried out using the ab initio HF/6-31+G(d) and hybrid density functional B3LYP/6-311++G(d,p) levels of theory. The most preferred conformations of oxidized and reduced CPFC peptides with the trans prolyl peptide bond have a type-I beta-turn for the Pro-Phe sequence in common. In particular, the transition states for both forms are stabilized by the intramolecular hydrogen bonds between the prolyl nitrogen and the N-H group of the Phe3 residue. The rotational barrier DeltaGct to the cis-to-trans isomerization for the oxidized CPFC peptide is calculated to be 19.37 kcal/mol at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory, which is lower by 0.88 kcal/mol than that of the reduced CPFC peptide. This may indicate that the rate constant kc-->t of the prolyl cis-to-trans isomerization for the oxidized form is about 4 times larger than that of the reduced form, which is reasonably consistent with the value deduced from NMR experiments. In particular, the increase in vibrational entropy for the transition state of the oxidized form over that of the reduced form contributes to enhance the rate constant for the prolyl cis-to-trans isomerization of the oxidized form.  相似文献   

14.
Studies on the structure and physico-chemical properties of amyloid fibrils are important with regard to a better understanding of amyloid diseases such as Alzheimer’s. Insulin is used as a protein model which is easily driven toward amyloid formation. In the present study, five sets of 15 ns molecular dynamics simulations were performed on insulin in order to observe the initial structural changes that occur in the process of amyloid formation. Potential energy, RMSD, and secondary structure percentage of sampled structures were analyzed in all experiments. Common residues that undergo the first conformational changes were detected to be S9 and V10 of the A chain, as well as G8 and S9 of the B chain. The RMSD of truncated insulin increased much more than full-length insulin to about 18 Å. However, the beta-sheet structures percentage of full-length insulin, which is an indicative of amyloid formation, was higher than the truncated form in the presence of salt. This is indicative of the importance of the five residues of the B chain C-terminal in the insulin misfolding process. Overall, simulating full-length insulin under high temperature and in the presence of KCl could be used to assess amyloid formation and potential amyloid inhibitors of this protein.  相似文献   

15.
The role of three highly conserved insulin residues Tyr^B26 was studied to better understand the relationship between insulin and receptor from rat adipose tissue plasma membranes, lnsulin analogues with a single amino acid substitution or single N-methylation of the peptide bond in the position B26 were all shortened in the C-terminus of the B-chain by four amino acids. The effect of modifications was followed by the binding to the insulin receptor. From our results, we can deduce several conclusions: (1) the replacement of tyrosine in the position B26 by histidine, [N-MeHis^B26]-des-tetrapeptide-(B27-B30)-insulin-B26-amide and [N-MeGlu^B26]-des-tetrapeptide- (B2-B30)-insulin-B26-amide, have no significant effect on the binding affinity and they show binding affinity 105%, 190% and 208%, respectively, of that of human insulin; (2) [Aad^B26] -des-tetrapeptide-(B27-B30)-insulin-B26-amide and [Phe(4-carboxy^B26)]-des-tetrapeptide- (B27~B30)-insulin-B26-amide affect the potency highly positively in vitro studies; they show binding affinity 529 and 289 %, respectively, of that of human insulin.  相似文献   

16.
Covalent adduction of the model protein apomyoglobin by 4-hydroxy-2-nonenal, a reactive end-product of lipid peroxidation, was characterized by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The high mass resolving power and mass measurement accuracy of the instrument facilitated a detailed compositional analysis of the complex reaction product without the need for deconvolution and transformation to clearly show the pattern of adduction and component molecular weights. Our study has also demonstrated the value of electron capture dissociation over collision-induced dissociation for the tandem mass spectrometric determination of site modification for the 4-hydroxy-2-nonenal adduct of oxidized insulin B chain as an example. Figure FTICR allowed characterization of 4-hydroxy-2-nonenal (HNE)-modified apomyoglobin (an expanded spectrum of the +15 charge state is shown)  相似文献   

17.
Incubation of proteins or peptides containing disulfide bonds (S-S) with sodium sulfite (Na(2)SO(3)) cleaves S-S bonds producing approximately equimolar amounts of free thiols (-SH) and thiosulfates (-S-SO(3)H), a process known as sulfitolysis. Proteins and peptides containing thiosulfates were separated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by mass spectrometry (MS) and peptide mapping. The mass of the thiosulfate-containing peptide formed from oxidized insulin B chain was 3478.02 Da, 80 Da greater than the reduced peptide and corresponding precisely to addition of sulfur trioxide (SO(3)). Disulfide bond cleavage was also observed using RP-HPLC and MS after incubation of the intramolecular homodimer of mouse S100A8 (mass 20614 Da). The mass of HPLC-separated A8-SH was 10308 Da, and 10388 Da for A8-S-SO(3)H. Loss of SO(3) from multiply charged precursor ions was generally observed at elevated declustering potentials in the source region or within q(2) at relatively low collision energies (approximately 20 V). The characteristic loss of SO(3) at low collision energies preceded peptide backbone fragmentations at higher collision energies. Accurate mass measurement and charge-state discrimination, using a hybrid quadrupole time-of-flight mass spectrometer, allowed specific detection of thiosulfate-containing peptides. An information-dependent acquisition method, where the switch criterion was loss of m/z 79.9568, specifically identified 11 thiosulfate-containing peptides using nano-LC/MS from a tryptic digest of bovine serum albumin (BSA).  相似文献   

18.
Ab initio MP2/6-31G(d,p) and density functional theory B3LYP/6-31G(d,p) calculations were performed to investigate the molecular structure of the active part of flavins in the oxidized and reduced forms, using lumiflavin as a model compound. The possible aromatic character of these systems was explored by using the following aromaticity indexes: nucleus-independent chemical shifts, the anisotropy of the magnetic susceptibility, the Bird index, and natural bond orbital analysis. To provide further insight, calculations on the 2+ charged species were also carried out. Both the MP2 and B3LYP computations predict a planar conformation for the oxidized form and a bent structure for the reduced form, in agreement with previous experience. For both the oxidized and reduced states, ring A is found to be the most aromatic, as expected. The calculations suggest that the folding in the reduced form is mainly a result of electronic preferences rather than steric hindrance.  相似文献   

19.
Aldehyde 2-aminophenylhydrazones are easily oxidized by air to 3-substituted 1,2,4-benzotriazines. In two cases the intermediate 3,4-dihydro-1,2,4-benzotriazines were isolated. In the absence of oxygen, acids catalyze the formation of 2-substituted benzimidazoles with loss of ammonia. It is suggested that both reactions proceed via 1,2,3,4-tetrahydro-1,2,4-benzotriazines (III), formed by addition of the amino group on the hydrazone double bond. Such cyclic forms (III) predominate over the open chain structures (II) in the cases of aliphatic and arylalkylaldehyde 2-aminophenylhydrazones, as supported by nmr spectra, while benzaldehyde 2-aminophenylhydrazone exists mainly or exclusively in the open chain form (II).  相似文献   

20.
The refolding of the reduced-denatured insulin from bovine pancreas was investigated with the size exclusion chromatography (SEC). It was shown that the reduced-denatured insulin originally denatured with 7.0 mol·L-1 guanidine hydrochloride (GuHCI) or 8.0 mol·L-1 urea could not be refolded with a non-oxidized mobile phase. Although the oxidized and reduced glutathione (GSSG and GSH) were employed in the oxidized mobile phase, the reduced-denatured insulin still could not be renatured. However, in the presence of 2.0 mol·L-1 urea in the oxidized mobile phase employed, the reduced-denatured insulin can be refolded with SEC, and the aggregation of denatured insulin can be diminished by urea. In addition, the disul-fide exchange of reduced-denatured insulin also can be accelerated with GSSG/GSH in the oxidized mobile phase. The three disulfide bridges of insulin were formed correctly and the reduced-unfolded insulin can be renatured completely. The results were further tested with re-versed-phase liquid chromatography (RPLC) and hydrophobic interaction chromatography (HIC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号