首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
厌氧环境下一些微生物能够接受来自于电极的电子并将电子传递至环境污染物,这使得电驱动下生物还原技术在可持续性废水处理以及生物修复方面受到越来越多关注.此体系中,阴极电子传递被认为是影响环境污染物厌氧转化可行性和效率的制约因素.文中首先评述可能的电子传递原理,包括水解氢气介导的间接电子传递、人工合成电子穿梭体或者细菌分泌电子穿梭体介导的间接电子传递、以及电极与细菌之间的直接电子传递等途径.相比间接电子传递,直接电子传递避免了将电子传递给没有起作用的介体及没有和电极接触的浮游微生物,因而更加节能.另外,列举了自养反硝化、生物还原脱氯、重金属生物还原、CO2生物还原以及硫酸盐生物还原等应用实例.最后,提出了此领域研究发展亟需解决的两个重要问题,包括阴极生物膜的培养以及电子从电极转至微生物内在机理的解析.  相似文献   

2.
微生物纳米导线是指在缺少可溶性电子受体的条件下由微生物形成类似菌毛的导电附属物,通过它传递电子是微生物为提高胞外电子传递效率而进化形成的一种有效的电子传递方式。微生物可利用具有高效导电特性的纳米导线将电子传递到远离细胞表面的地方,从而使微生物摆脱了需要直接接触胞外电子受体(Fe(Ⅲ)氧化物或电极)才能传递电子的限制。微生物纳米导线的发现丰富了人们对胞外呼吸多样性的认识,同时其在提高微生物燃料电池产电效率、促进环境中有机污染物的快速降解和生物能源等方面具有重要的应用前景,成为了当前研究的前沿和热点。本文简单介绍了微生物纳米导线的基本特性和产生纳米导线的微生物种类,重点阐述了由Geobacter和Shewanella微生物生成的纳米导线电子传递机制以及其在生物能源和生物修复等方面的应用,并展望了今后的研究重点。  相似文献   

3.
电生物还原降解二氯酚的动力学特性及功能菌解析   总被引:1,自引:0,他引:1  
采用电辅助微生物(电生物)体系对二氯酚(2,4-DCP)进行了还原降解研究, 应用聚合酶链式反应-单链构象多肽技术(PCR-SSCP)对微生物群落结构进行解析, 并通过16S rRNA基因克隆及测序构建了系统进化树. 结果表明, 电生物体系对二氯酚的降解符合零级反应动力学特征, 体系中主要以肠球菌(Enterococcus)、 假单胞菌(Pseudomonas)和拟杆菌(Bacteroidales)为优势菌群, 这些菌群在电子传递中起着主要作用. 电生物体系中存在着电极与细胞色素c和脱氢酶的辅酶(NAD)及污染物间的逆向电子传递途径, 可实现电极-微生物-污染物多相界间的长程电子传递.  相似文献   

4.
刘利丹  肖勇  吴义诚  陈必链  赵峰 《化学进展》2014,26(11):1859-1866
电化学活性微生物与电极之间的胞外电子传递在微生物电化学系统(microbial electrochemical systems,MESs)产能、生物修复等功能的实现中起着关键作用.目前,研究者对微生物胞外电子传递机理了解有限,限制了MESs的应用.相比于需要微生物功能蛋白与电极接触才能发生的直接电子传递,间接电子传递可通过具有可逆氧化还原活性的电子中介体(electron transfer mediators,ETMs)实现电子的传递,从而有效提高微生物胞外电子传递效率.在间接电子转移过程中,ETMs起着中间电子受体和中间电子供体的作用,即被还原后可将电子传递给最终电子受体并被重新还原;理论上每个ETMs分子可以循环数千次,因此ETMs对特定环境下终端氧化物(如铁离子)的循环有着极其显著的作用.本文系统总结了MESs中ETMs及间接电子传递机制近年来的研究进展,并且在此基础上探讨了ETMs在MESs中的研究趋势,以期推动MESs在生物修复、能源生产方面的实际应用.  相似文献   

5.
胞外电子传递(EET)是指氧化还原反应所产生的电子在微生物细胞内和细胞外的电子受体/电子供体之间互相转移的过程,这一过程伴随着能量和物质的转化。阐明EET机制是提高微生物能量和物质转化效率的基础,为元素的生物地球化学循环、金属防腐以及生物电化学系统的应用等提供理论支撑。电化学技术作为研究电极/溶液界面电子转移的简便、有效方法,在研究微生物的直接电子传递和间接电子传递机制中发挥了重要的作用,也促进了EET机制的研究从宏观层面到微观层面不断深入。本文综述了研究微生物EET机制所涉及的电化学联用技术(包括微电极、扫描电化学显微镜、电化学联用光学显微镜和光谱电化学等);详细介绍了这些电化学联用技术的功能和优势;重点阐述了这些电化学联用技术如何推动着EET机制的研究,从宏观的生物膜层面到微观的单个微生物细胞、蛋白和分子层面不断深入;展望了新的电化学联用技术在EET研究领域的应用前景。  相似文献   

6.
砷锑污染在全球领域广泛存在,与常规的铁氧化物相比,微生物铁氧化生成的含Fe(Ⅲ)矿物对水中砷/锑(As/Sb)具有更强的吸附能力,并因其高效、实用和环境友好而具有广阔的应用前景,但微生物铁还原也可能导致被吸附的As/Sb再次释放。本文综述了微生物铁氧化还原作用对As/Sb去除影响的研究进展,归纳了铁矿物“合成-溶解-转化”的微生物循环过程以及该循环伴随的水中As/Sb固定、溶解与转化机理,整合了微生物合成Fe(Ⅲ)矿物的矿物学性质、对As/Sb固定的热动力学规律和络合机制,总结了微生物合成Fe(Ⅲ)矿物对As/Sb去除的影响因素,基于该研究的现存问题展望了利用微生物铁氧化还原作用去除As/Sb的发展方向。  相似文献   

7.
马金莲  马晨  汤佳  周顺桂  庄莉 《化学进展》2015,27(12):1833-1840
厌氧条件下微生物将电子传递给胞外电子受体的现象非常普遍,电子穿梭体(electron shuttle,ES)是介导胞外电子传递过程的重要途径之一,但其具体的机制尚未明晰。一部分微生物自身能分泌一些物质作为内生ES,另一部分微生物能利用天然存在或人工合成的某些物质作为外生ES,并将其携带的电子传递至微生物胞外电子受体。ES介导微生物胞外电子传递的基本过程为:氧化态电子穿梭体(ESox)接受电子变成还原态(ESred),ESred传递电子给胞外电子受体,自身再次氧化成ESox,从而循环往复。本文重点介绍不同种类ES及其电子穿梭机制,以及ES的分子扩散、氧化还原电势及电子转移能力对胞外电子传递过程的影响。ES介导的胞外电子传递过程直接影响污染物转化和微生物产电,因此在污染修复及生物能源等方面具有重要的应用前景。  相似文献   

8.
邱轩  石良 《化学学报》2017,75(6):583-593
含铁矿物常见于土壤中和地表下.在那里,它们以多种形式支撑微生物的生长和代谢,如作为微生物厌氧呼吸的电子受体、微生物自养生长的电子供体和能量来源、微生物细胞之间的电子导体和电子储存介质.微生物细胞膜套的物理化学性质决定其既不具有矿物渗透性,也不具备导电性.因此,微生物需要进化出特定的机制同胞外矿物交换电子(即胞外电子传导).微生物胞外电子传导与常见的,用于有氧呼吸的微生物细胞电子传递链有着诸多本质区别.本文中,我们概述了微生物与胞外含铁矿物之间电子传导的分子机理,以及相关的微生物在生物修复污染物、生产新型纳米材料、生物采矿和生物能源中的应用.  相似文献   

9.
陈立香  李祎頔  田晓春  赵峰 《化学进展》2020,32(10):1557-1563
电活性菌将电子从胞内转移至胞外电子受体或者将胞外电子转移至胞内的过程为胞外电子传递,其在微生物群落间的电子传递及元素的地球化学循环过程中发挥重要作用。电活性菌的胞外电子传递研究前期主要集中于革兰氏阴性菌,由于革兰氏阳性菌与革兰氏阴性菌的膜结构/厚度明显不同,因此二者的电子跨膜传递途径差异明显。革兰氏阳性菌因分布广泛且可在高温、低pH、高pH和高盐等环境中生存,其电活性和电子传递机制也逐渐引起关注。本文归纳总结了革兰氏阳性电活性菌的电子传递类型,基于厚壁菌门、放线菌门和绿弯菌门的分类阐述胞外电子传递的研究进展,分析了革兰氏阳性电活性菌在污染物降解、生物能源和工业制品合成等方面的应用,并展望了未来的发展方向。  相似文献   

10.
近年来,随着宏基因组学、蛋白质组学和代谢组学等技术的发展,工业微生物技术在资源、医药和手性合成等领域已经成为热点技术,并开拓了电子和纳米技术等新的应用领域.本文综述了几项最新的工业微生物技术,主要包括:微生物环氧化水解酶催化合成手性二醇、微生物甲酸脱氢酶用于再生氧化还原反应的辅因子、通过噬菌体展示技术得到纳米级金属丝、代谢网络改造和重建用于传统发酵生产以及有机溶剂耐受菌和宏基因组技术的应用.  相似文献   

11.
刘孟飞  王美  赵昂  朱琳  王椿  魏超  刘微  徐建中 《色谱》2023,41(1):58-65
有机磷酸二酯(Di-OPEs)被认为是有机磷酸三酯的生物或非生物降解产物。该研究基于超高效液相色谱-静电场轨道离子阱高分辨质谱(UHPLC-Orbitrap HRMS)建立了设施菜地土壤中磷酸二(2-氯)乙酯(BCEP)、磷酸二(1,3-二氯异丙基)酯(BDCP)、磷酸二正丁酯(DnBP)、磷酸二苯酯(DPhP)和磷酸二(2-乙基己基)酯(DEHP)5种Di-OPEs的定性定量分析方法。首先,土壤样品以甲醇为提取溶剂,超声提取,选择Oasis WAX固相萃取柱进行净化,用8 mL含5%(v/v)氨水的甲醇溶液洗脱,洗脱液浓缩定容后,应用Thermo Accucore RP-MS色谱柱,以甲醇-0.2 mmol/L乙酸铵水溶液为流动相进行分离,采用UHPLC-Orbitrap HRMS测定,质谱分析采用电喷雾负离子模式电离,在全扫描模式下检测。在优化的分析检测条件下,5种Di-OPEs的检出限为0.001~0.047 ng/g,定量限为0.004~0.156 ng/g。5种Di-OPEs的标准曲线线性关系良好,相关系数(r)为0.998 5~0.999 9。在5.0、25.0、50.0 ng/g的添加条件下,3种加标水平的回收率为56.9%~133.0%,相对标准偏差为4.4%~18.9%。应用建立的方法对采集的16个设施菜地土壤样品进行分析,结果显示设施菜地土壤中5种Di-OPEs的含量为2.53~6.94 ng/g,所有样品中Di-OPEs的检出率均高于60%。其中,DnBP是设施菜地土壤中的主要污染物,含量范围为1.37~3.20 ng/g,占Di-OPEs总含量的23.4%~68.8%。该方法操作简便,灵敏度高,重复性良好,适用于设施菜地土壤中Di-OPEs的测定,也为今后开展设施菜地土壤中Di-OPEs的环境行为和人体暴露研究提供可靠的技术支持。  相似文献   

12.
Nanomaterials used in electrochemical sensors can significantly improve the analytical performance to environmental pollutants. This review mainly discusses the strategies for signal amplification by the rational design of nanoelectrode materials from the perspective of mass and electron transfer processes of electrode/solution interface. First, the advantages and features of nanostructured electrochemical sensors for environmental pollutants are summarized. Then, the detailed discussions are focused on the signal amplification strategies by regulating dimensionality, atomic arrangement, and composition of electrode materials. This review gives a unique insight about the influences of electrode material design on mass and electron transfer processes of electrochemical sensors. Finally, on the basis of the current achievements in the field of nanomaterials, the perspectives on the challenges and opportunities for the exploration of nanostructured electrochemical sensors are put forward.  相似文献   

13.
The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p–n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p‐type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n‐type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron‐transfer channel, thus resulting in efficient separation of photoinduced electron–hole pairs. Such a p–n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications.  相似文献   

14.
The remarkable physicochemical properties of graphene (GR) and derivatives can be leveraged in the photocatalytic activity of GR-semiconductor photocatalysts. The hitherto state of knowledge on the role of GR in these composite materials is insufficient and leaves many questions unanswered, thus it is imperative to fully understand the interaction mechanisms between GR and inorganic semiconductors. Detailed study and optimization of the features related to the interface are still very much sought to efficiently design photocatalysts targeting their eventual commercialization. This review shows that photocatalytic activity of such composites depends not only on high GR electron mobility and charge transfer, but also on the properties of the interface (such as interface morphology, size, crystal phases and facet, dimensionality of composites, etc.). Focusing on the last advancements in this field, this review analyses the challenges involved in the synthetic strategies of GR-semiconductor photo(electro)catalysts in various applications including pollutant degradation, organic synthesis, hydrogen evolution and photoreduction of carbon dioxide (CO2). Mechanism of interaction between GR and semiconductors are thoroughly discussed by examining the proposed mechanism in the diverse areas where the composite materials are employed in photo(electro)catalytic processes. In addition, various synthetic and characterization technique available hitherto are presented, since they are pivotal to the understanding of the composites properties (such as morphology, crystal phases and exposed facets, degree of crystallinity, dimensionality etc.), and even to shed more light on interaction mechanisms of the photocatalyst constituents. As a future outlook, it is envisaged that research will not only focus on optimizing GR electrical and chemical properties, yet in the synthesis of GR-semiconductor photocatalysts attention needs also be placed on the properties of the resulting composites, using suitable synthetic methods and proper characterizations to assess their performance.  相似文献   

15.
TiO2 has received tremendous attention owing to its potential applications in the field of photocatalysis for solar fuel production and environmental remediation. This review mainly describes various modification strategies and potential applications of TiO2 in efficient photocatalysis. In past few years, various strategies have been developed to improve the photocatalytic performance of TiO2, including noble metal deposition, elemental doping, inorganic acids modification, heterojunctions with other semiconductors, dye sensitization and metal ion implantation. The enhanced photocatalytic activities of TiO2-based material for CO2 conversion, water splitting and pollutants degradation are highlighted in this review.  相似文献   

16.
Semiconductor photocatalysis has great potential in the fields of solar fuel production and environmental remediation. Nevertheless, the photocatalytic efficiency still constrains its practical production applications. The development of new semiconductor materials is essential to enhance the solar energy conversion efficiency of photocatalytic systems. Recently, the research on enhancing the photocatalytic performance of semiconductors by introducing bismuth (Bi) has attracted widespread attention. In this review, we briefly overview the main synthesis methods of Bi/semiconductor photocatalysts and summarize the control of the micromorphology of Bi in Bi/semiconductors and the key role of Bi in the catalytic system. In addition, the promising applications of Bi/semiconductors in photocatalysis, such as pollutant degradation, sterilization, water separation, CO2 reduction, and N2 fixation, are outlined. Finally, an outlook on the challenges and future research directions of Bi/semiconductor photocatalysts is given. We aim to offer guidance for the rational design and synthesis of high-efficiency Bi/semiconductor photocatalysts for energy and environmental applications.  相似文献   

17.
Current energy crisis and environmental issues, including depletion of fossil fuels, rapid industrialization, and undesired CO2 emission resulting in global warming has created havoc for the global population and significantly affected the quality of life. In this scenario the environmental problems in the forefront of research priorities. Development of renewable energy resources particularly the efficient conversion of solar light to sustainable energy is crucial in addressing environmental problems. In this regard, the synthesis of semiconductors-based photocatalysts has emerged as an effective tool for different photocatalytic applications and environmental remediation. Among different photocatalyst options available, graphene and graphene derivatives such as, graphene oxide (GO), highly reduced graphene oxide (HRG), and doped graphene (N, S, P, B-HRG) have become rising stars on the horizon of semiconductors-based photocatalytic applications. Graphene is a single layer of graphite consisting of a unique planar structure, high conductivity, greater electron mobility, and significantly very high specific surface area. Besides, the recent advancements in synthetic approaches have led to the cost-effective production of graphene-based materials on a large-scale. Therefore, graphene-based materials have gained considerable recognition for the production of semiconducting photocatalysts involving other semiconducting materials. The graphene-based semiconductors photocatalysts surpasses electron-holes pairs recombination rate and lowers the energy band gap by tailoring the valence band (VB) and conduction band (CB) leading to the enhanced photocatalytic performance of hybrid photocatalysts. Herein, we have summarized the latest developments in designing and fabrication of graphene-based semiconducting photocatalysts using a variety of commonly applied methods such as, post-deposition methods, in-situ binding methods, hydrothermal and/or solvothermal approaches. In addition, we will discuss the photocatalytic properties of the resulting graphene-based hybrid materials for various environmental remediation processes such as; (i) clean H2 fuel production, photocatalytic (ii) pollutants degradation, (iii) photo-redox organic transformation and (iv) photo-induced CO2 reduction. On the whole, by the inclusion of more than 300 references, this review possibly covered in detail the aspects of graphene-based semiconductor photocatalysts for environmental remediation processes. Finally, the review will conclude a short summary and discussion about future perspectives, challenges and new directions in these emerging areas of research.  相似文献   

18.
This work investigates the degradation and properties of a thermoplastically prepared composite comprising a polylactide/hybrid zinc stearate-silver system.The influence of the zinc stearate-silver system on the properties of the composite is investigated by electron microscopy,differential scanning calorimetry and tensile tests.Furthermore,the antimicrobial activities of the systems are examined.The degradation behaviour of the composites is studied in both abiotic and biotic(composting) environments at an elevated temperature of 58 °C.The results reveal good dispersion of the additive in the PLA matrix,a stabilizing effect exerted by the same on the polylactide matrix during processing,and slight reduction in glass transition temperature.The zinc stearate-silver component also reduces brittleness and extends elongation of the composite.Abiotic hydrolysis is not significantly affected,which is in contrast with pure PLA,although mineralization during the early stage of biodegradation increases noticeably.The composite exhibits antimicrobial activity,even at the lowest dosage of the zinc stearate/silver component(1 wt%).Moreover,Ag and Zn contents were found to be present in the composite during abiotic hydrolysis,which was demonstrated by minimal diffusion of Ag ions from the matrix and very extensive washing of compounds that contained Zn.  相似文献   

19.
Transmethylation reactions between organometals and metal ions in aqueous solutions in biotic and abiotic systems, with and without the presence of sediment, were investigated. It was found that alkyllead compounds can transfer their alkyl groups to Sn(II) and Sn(IV) ions to form various methyltin compounds in biotic and abiotic systems. The presence of sediment enhanced the transmethylation reactions. Methyltin compounds do not transfer their methyl groups of Pb(II). Methylarsenic acids transfer their methyl groups to Sn(II) and Sn(IV) in an abiotic system, but not in a biotic system containing sediment. The strong adsorption of tin onto sediment was the reason for the non-availability of tin ions for methylation. Methylarsenic acids do not transmethylate Pb(II). Other alkyllead compounds, such as ethyllead and butyllead species were also able to transfer their alkyl groups to tin. When both trimethyllead and triethyllead species are present in the same system, only the individual monoalkyl tin species were formed in both the Sn(II) and Sn(IV) solutions. No mixed alkyltin was produced. The findings of this study suggest that alkyllead compounds, if present in the environment, could be potential methylating agents for the formation of other methylmetals, such as methyltins. Methyltin compounds have already been documented to methylate mercuric ions in aqueous solution. Thus the study of transmethylation reactions opens up a new area of research that is essential in predicting the fate of organometals in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号