首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Xi J  Chen Y  Zhang Y  Murari K  Li MJ  Li X 《Optics letters》2012,37(3):362-364
We report an all-fiber-optic scanning, multimodal endomicroscope capable of simultaneous optical coherence tomography (OCT) and two-photon fluorescence (TPF) imaging. Both imaging modalities share the same miniature fiber-optic scanning endomicroscope, which consists of a double-clad fiber with a core operating in single mode at both the OCT (1310 nm) and two-photon excitation (1550 nm) wavelengths, a piezoelectric two-dimensional fiber-optic beam scanner, and a miniature aspherical compound lens suitable for simultaneous acquisition of en face OCT and TPF images. A fiber-optic wavelength division multiplexer was employed in the integrated platform to combine the low coherence OCT light source and the femtosecond two-photon excitation laser into the same optical path. Preliminary imaging results of cell cultures and mouse tissue ex vivo demonstrate the feasibility of simultaneous real-time OCT and TPF imaging in a scanning endomicroscopy setting for the first time.  相似文献   

2.
An L  Wang RK 《Optics letters》2011,36(6):831-833
This Letter presents a useful method that combines the full range complex Fourier domain optical coherence tomography (OCT) with the ultrahigh sensitive optical microangiography (OMAG) to achieve full range complex imaging of blood flow within microcirculatory tissue beds in vivo. We propose to use the fast scanning axis to realize the full range complex imaging, while using the slow axis to achieve OMAG imaging of blood flow. We demonstrate the proposed method by using a high speed 1310?nm OCT/OMAG system running at 92?kHz line scan rate to image the flow phantoms in vitro, and the blood flows in tissue beds in vivo.  相似文献   

3.
Xu C  Vinegoni C  Ralston TS  Luo W  Tan W  Boppart SA 《Optics letters》2006,31(8):1079-1081
The spectroscopic content within optical coherence tomography (OCT) data can provide a wealth of information. Spectroscopic OCT methods are frequently limited by time-frequency trade-offs that limit high spectral and spatial resolution simultaneously. We present spectroscopic spectral-domain optical coherence microscopy performed with a multimodality microscope. Restricting the spatial extent of the signal by using high-numerical-aperture optics makes high-resolution spectroscopic information accessible, facilitated with spectral-domain detection. Simultaneous acquisition of multiphoton microscopy images is used to validate tissue structure and localization of nuclei within individual cells.  相似文献   

4.
We have proposed a tested in tissue phantoms and in vivo a novel sensor based on optical coherence tomography (OCT) for noninvasive and continuous monitoring of blood glucose concentration. OCT images were obtained from pig and rabbit skin before and after glucose administration. Slopes of OCT signals decreased substantially (~40% in tissues in vivo) and linearly with the increase of blood glucose concentration from 4 to 30 mM, typical for normal and diabetic subjects. Phantom studies demonstrated 1% accuracy of scattering-coefficient measurement. Our theoretical and experimental studies suggest that glucose concentration can potentially be measured noninvasively with high sensitivity and accuracy with OCT systems.  相似文献   

5.
We demonstrate ultrahigh-resolution optical coherence tomography (OCT) using continuum generation in an air-silica microstructure fiber as a low-coherence light source. A broadband OCT system was developed and imaging was performed with a bandwidth of 370 nm at a 1.3-mu;m center wavelength. Longitudinal resolutions of 2.5 microm in air and ~2 microm in tissue were achieved. Ultrahigh-resolution imaging in biological tissue in vivo was demonstrated.  相似文献   

6.
Combined confocal scanning ophthalmoscopy/en face T-scan-based ultrahigh-resolution optical coherence tomography (OCT) of the human retina in vivo is reported for the first time to our knowledge. The system uses a superluminescent diode-based broadband source, which gives an axial resolution of 3.2 microm in the retina. We demonstrate acquisition of T-scan-based OCT B-scan and simultaneous confocal/C-scan images of the human retina of large lateral size (covering a field of up to 20 degrees ) at a frame rate of 2Hz.  相似文献   

7.
A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for heterogeneous multilayered tissue. Excellent agreement between the extracted values of the optical scattering properties of the different layers and the corresponding input reference values of the MC simulation was obtained, which demonstrates the feasibility of the method for in vivo applications. This is to our knowledge the first time such verification has been obtained, and the results hold promise for expanding the functional imaging capabilities of OCT.  相似文献   

8.
Doppler optical coherence tomography (OCT) can image tissue structure and blood flow at micrometer-scale resolution but has limited imaging depth. We report a novel, linear-scanning, needle-based Doppler OCT system using angle-polished gradient-index or ball-lensed fibers. A prototype system with a 19-guage (diameter of approximately 0.9 mm) echogenic needle is constructed and demonstrates in vivo imaging of bidirectional blood flow in rat leg and abdominal cavity. To our knowledge, this is the first demonstration of Doppler OCT through a needle probe in interstitial applications to visualize deeply situated microcirculation.  相似文献   

9.
Cobb MJ  Liu X  Li X 《Optics letters》2005,30(13):1680-1682
We report an approach to achieving continuous focus tracking and a depth-independent transverse resolution for real-time optical coherence tomography (OCT) imaging. Continuous real-time focus tracking is permitted by use of a lateral-priority image acquisition sequence in which the depth-scanning rate is equivalent to the imaging frame rate. Real-time OCT imaging with continuous focus tracking is performed at 1 frame/s by reciprocal translation of a rapid lateral-scanning miniature imaging probe (e.g., an endoscope). The optical path length in the reference arm is scanned synchronously to ensure that the coherence gate coincides with the imaging beam focus. The image quality improvement is experimentally demonstrated by imaging a tissue phantom embedded with polystyrene microspheres and rabbit esophageal tissues.  相似文献   

10.
Lim H  Jiang Y  Wang Y  Huang YC  Chen Z  Wise FW 《Optics letters》2005,30(10):1171-1173
We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution of 2.1 microm in air (<1.6 microm in biological tissue). The generation of a broad bandwidth is robust and efficient. We demonstrate ultrahigh-resolution, time-domain OCT imaging of in vitro and in vivo biological tissues.  相似文献   

11.
We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for in vivo imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is an extension of optical coherence tomography (OCT), employing coherent signal-acquisition electronics and joint time-frequency analysis algorithms to perform flow imaging simultaneous with conventional OCT imaging. Cross-sectional maps of blood flow velocity with <50-microm spatial resolution and <0.6-mm/s velocity precision were obtained through intact skin in living hamster subdermal tissue. This technology has several potential medical applications.  相似文献   

12.
In vivo full-field (FF) optical coherence tomography (OCT) images of human retina are presented by using a rapidly tunable laser source in combination with an ultra-high-speed camera. Fourier-domain FF-OCT provided a way to increase the speed of retinal imaging by parallel acquisition of A-scans. Reduced contrast caused by cross talk was observed only below the retinal pigment epithelium. With a 100Hz sweep rate, FF-OCT was fast enough to acquire OCT images with acceptable motion artifacts. FF-OCT allows ultrafast retinal imaging, boosting image speed by a lack of moving parts and a considerably higher irradiation power.  相似文献   

13.
OCT技术在发育生物学中的应用   总被引:3,自引:3,他引:0       下载免费PDF全文
李剑平  李栋 《应用光学》2005,26(2):60-64
基于光学低相干反射测量而发展起来的光学相干层析技术( Optica1 Coherence Tomography,OCT)是一种新型的成像技术,它可以对强散射介质如生物组织实施非侵入性的快速活体成像。与传统的组织切片相比,OTC可以大大减少对发育形态成像所需的时间、复杂程度及成本。非接触和非侵入式的成像方式有助于研究个体发育中由基因变异所引起的形态和功能变化,因而在发育生物学的研究当中有着广阔的应用前景。概述了OCT技术在发育生物学当中诸方面的应用情况。  相似文献   

14.
We describe high-speed Fourier domain optical coherence tomography (OCT) using optical demultiplexers (ODs) for spectral dispersion. The OD enables separation of a narrow spectral band of 14 GHz (0.11 nm) from a broadband incident light at 256 different frequencies in 25.0 GHz intervals centered at 192.2 THz (1559.8 nm). OCT imaging of 60,000,000 axial scans per second was achieved through parallel signal acquisition using 256 balanced photoreceivers to simultaneously detect all the output signals from the ODs in a Fourier domain OCT system. OCT imaging at a 16 kHz frame rate, 1100 A-lines per frame, 3 mm depth range, and 23 microm resolution was demonstrated using a resonant scanner for lateral scanning.  相似文献   

15.
Speed acquisition for image formation process through scattering medium is a challenge in optical coherence tomography (OCT) approach. Besides time domain (TD), spectral Fourier domain (FD) is now widely studied. By using a swept laser source, we demonstrate that a particular time domain OCT method (optical SISAM correlator) can be simultaneously implemented in a single set-up with the corresponding Fourier domain OCT approach (spectral interferometry). Then, FD-OCT and TD-OCT signals are obtained by processing a 3D “spatial-frequential” interferences pattern. We show that these two numerical approaches can be complementary when imaging in scattering medium is achieved.  相似文献   

16.
Differential spectral interferometry (DSI), a novel method of biomedical imaging that combines the high dynamic range of optical coherence tomography (OCT) with inherently parallel low-bandwidth image acquisition of spectral interferometry (SI), is described. DSI efficiently removes the deleterious dc background inherent in SI measurements while maintaining the parallel nature of SI. We demonstrate DSI on both synthetic and biological samples. Because DSI preserves the low-bandwidth, parallel nature of SI, it is competitive with OCT for biomedical applications in terms of image quality and acquisition rate.  相似文献   

17.
Pan YT  Wu Q  Wang ZG  Brink PR  Du CW 《Optics letters》2005,30(17):2263-2265
We report an experimental study of the possibility of high-speed optical coherence tomography (OCT) for high-resolution imaging characterization of detrusor dynamic morphophysiology and analysis of the mechanisms that lead to geriatric incontinence (GI). The spontaneous contractility of intact fresh rabbit bladders was imaged with two-dimensional (2D) OCT ex vivo at up to 8 frames/s. The time-lapse 2D OCT images were postprocessed by image segmentation and fast-Fourier-transform analysis to characterize the dynamic morphological changes of the bladder contractility. In addition, we studied young and aging rat bladders to analyze the differences in dynamics. Preliminary results of our ex vivo study reveal that time-lapse OCT can track the contractile waves of bladders at high spatial resolution and characterize their dynamic morphophysiology in terms of amplitude, phase, and frequency. The results suggest that time-lapse OCT has the potential to act as a detrusor optical biopsy to enhance the diagnosis of detrusor dysfunction and thus of the mechanisms that lead to GI.  相似文献   

18.
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.  相似文献   

19.
Saxer CE  de Boer JF  Park BH  Zhao Y  Chen Z  Nelson JS 《Optics letters》2000,25(18):1355-1357
A high-speed single-mode fiber-based polarization-sensitive optical coherence tomography (PS OCT) system was developed. With a polarization modulator, Stokes parameters of reflected flight for four input polarization states are measured as a function of depth. A phase modulator in the reference arm of a Michelson interferometer permits independent control of the axial scan rate and carrier frequency. In vivo PS OCT images of human skin are presented, showing subsurface structures that are not discernible in conventional OCT images. A phase retardation image in tissue is calculated based on the reflected Stokes parameters of the four input polarization states.  相似文献   

20.
Liu X  Cobb MJ  Chen Y  Kimmey MB  Li X 《Optics letters》2004,29(15):1763-1765
We developed a miniature endoscope that is capable of rapid lateral scanning and is suitable for real-time forward-imaging optical coherence tomography (OCT). The endoscope has an outer diameter of 2.4 mm, consisting of a miniature tubular lead zirconate titanate (PZT) actuator, a single-mode fiber-optic cantilever, and a graded-index lens. Rapid lateral scanning at 2.8 kHz is achieved when the fiber-optic cantilever is resonated with the PZT actuator. This allows OCT imaging to be performed by fast lateral beam scanning followed by slow depth scanning, which is different from the conventional OCT imaging sequence. Real-time OCT imaging with the endoscope operated in the new image acquisition sequence at 6 frames/s is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号