首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Jing Wang  Wen Meng  Zhenjie Ni  Sijia Xue 《中国化学》2011,29(10):2109-2113
A series of novel N‐(substituted benzyl)‐3,5‐bis(benzylidene)‐4‐piperidones 5a – 5o were synthesized with substituted benzylamines as raw materials via a series of Michael addition, Dieckmann condensation, hydrolysis decarboxylation and aldol condensation. The structures were confirmed by 1H NMR, IR, MS techniques and elemental analysis. Assay‐based antiproliferative activity study using leukemic cell lines K562 revealed that most of the title compounds have high effectiveness in inhibiting leukemia K562 cells proliferation, among which the compounds 5g (IC50=7.81 µg·mL−1), 5k (IC50=6.35 µg·mL−1), 5l (IC50=7.20 µg·mL−1), and 5o (IC50=5.79 µg·mL−1) have better inhibition activities than standard 5‐fluorouracil (IC50=8.56 µg·mL−1).  相似文献   

2.
Cytotoxicity against the KB cancer cell line as a lead bioactivity‐guided fractionation of the petroleum ether extract of rhizomes of Amomum aculeatum Roxb. led to the isolation of three novel dioxadispiro[5.1.5.2]pentadeca‐9,12‐dien‐11‐one derivatives. The structures of aculeatin A ( 1 ), aculeatin B ( 2 ), and aculeatin C ( 3 ) were established as rel‐(2R,4R,6S)‐ and rel‐(2R,4R,6R)‐4‐hydroxy‐2‐tridecyl‐1,7‐dioxadispiro[5.1.5.2]pentadeca‐9,12‐dien‐11‐one ( 1 and 2 , resp.) and rel‐(2R,4R,6R)‐2‐[4‐(3‐dodecyl‐2‐heptyl‐3‐hydroxy‐6‐oxocylohexa‐1,4‐dienyl)‐2‐oxobutyl]‐4‐hydroxy‐1,7‐dioxadispiro[5.1.5.2]pentadeca‐9,12‐dien‐11‐one ( 3 ) by extensive spectroscopic analyses, particularly 13C‐NMR, inverse‐gated 13C, HMQC, HMBC, NOESY, and INADEQUATE NMR experiments as well as mass spectrometry. The aculeatins represent a novel type of natural products. All compounds showed high cytotoxicity against the KB cell line: 1 , IC50=1.7 μM ; 2 , IC50=2.0 μM ; 3 , IC50=1.6 μM . Additional testing against two Plasmodium falciparum strains as well as against trypomastigote forms of Trypanosoma brucei rhodesiense and Trypanosoma cruzi showed strong activities, particularly against P. falciparum strain K1 ( 1 , IC50=0.18 μM ; 2 , IC50=0.43 μM ; 3 , IC50=0.37 μM ).  相似文献   

3.
N‐Methyl‐L ‐phenylalanine ( 5 ), N‐methyl‐4‐nitro‐L ‐phenylalanine ( 6 ), and N,N‐dimethyl‐4‐nitro‐L ‐phenylalanine ( 7 ?H+) were investigated as substrates or inhibitors of phenylalanine ammonia lyase from Petroselinum crispum. Whereas the former was a reluctant substrate (Km =6.6 mM , kcat =0.22 s?1), no reverse reaction could be detected by using methylamine and (E)‐cinnamate ( 2 ). The Km value for ammonia in the reverse reaction by using (E)‐cinnamate ( 2 ) was determined to be 4.4 and 2.6M at pH 8.8 and 10, respectively. The N‐methylated 4‐nitro‐L ‐phenylalanines 6 and 7 showed only strong inhibitory effects (Ki =130 nM and 8 nM , resp.). These and former results are discussed in terms of the mechanism of action of phenyalalanine and histidine ammonia lyases.  相似文献   

4.
A series of new isatin–mesalamine conjugates ( 9a – g ) were synthesized via conjugation of isatin ( 3a ) and its derivatives ( 3b – 3d , 4 , 5 , and 6 ) with mesalamine ( 7 ) by using chloroacetyl chloride as a bifunctional linker. Compounds 3a – 3d were prepared by employing Sandmeyer reaction. Compounds 4 , 5 , and 6 were obtained from isatin ( 3a ) via previously reported methods. The synthesized compounds were characterized by IR, mass, 1H NMR, and 13C NMR spectral techniques. Synthesized compounds ( 3a – d , 4 , 5 , 6 , and 9a – g ) were evaluated for in vitro antioxidant activity by DPPH assay method using ascorbic acid as standard. Hybrids 9b (IC50 = 368.6 ± 3.5 μM) and 9f (IC50 = 335.1 ± 2.9 μM) showed better antioxidant activity than its parent compounds such as 3a (IC50 = 556.8 ± 2.9 μM), 5 (IC50 = 511.9 ± 3.6 μM), and 7 (IC50 = 768.9 ± 2.7 μM). Acetic acid‐induced ulcerative colitis in rat model was chosen to examine the antioxidant potential of the synthesized hybrids ( 9b and 9f ) in the amelioration of ulcerative colitis. Colonic myeloperoxidase and malondialdehyde enzymes were used as biomarkers of anti‐ulcerative colitis activity. In the present study, hybrids 9b and 9f reduced the levels of colonic myeloperoxidase and malondialdehyde enzymes significantly (p < 0.05) when compared with control (colitic), at a dose (0.03 mM/12.5 mg/kg b.w. p.o.) (50%) less than that of its parent moieties mesalamine (0.16 mM/25 mg/kg) and isatin (0.16 mM/25 mg/kg). Thus, the molecular hybridization was proved to be significant in enhancing the activity of hybrids 9b and 9f by reducing the dose.  相似文献   

5.
Ring carbo‐mers of oligo(phenylene ethynylene)s (OPEn, n=0–2), made of C2‐catenated C18 carbo‐benzene rings, have been synthesized and characterized by NMR and UV‐vis spectroscopy, crystallography and voltammetry. Analyses of crystal and DFT‐optimized structures show that the C18 rings preserve their individual aromatic character according to structural and magnetic criteria (NICS indices). Carbo‐terphenyls (n=2) are reversibly reduced at ca. ?0.42 V/SCE, i.e. 0.41 V more readily than the corresponding carbo‐benzene (?0.83 V/SCE), thus revealing efficient inter‐ring π‐conjugation. An accurate linear fit of E1/2red1 vs. the DFT LUMO energy suggests a notably higher value (?0.30 V/SCE) for a carbo‐quaterphenyl congener (n=3). Increase with n of the effective π‐conjugation is also evidenced by a red shift of two of the three main visible light absorption bands, all being assigned to TDDFT‐calculated excited states, one of them restricting to a HOMO→LUMO main one‐electron transition.  相似文献   

6.
The bicyclic depsipeptide histone deacetylase (HDAC) inhibitors spiruchostatins A and B, 5′′‐epi‐spiruchostatin B and FK228 were efficiently synthesized in a convergent and unified manner. The synthetic method involved the following crucial steps: i) a Julia–Kocienski olefination of a 1,3‐propanediol‐derived sulfone and a L ‐ or D ‐malic acid‐derived aldehyde to access the most synthetically challenging unit, (3S or 3R,4E)‐3‐hydroxy‐7‐mercaptohept‐4‐enoic acid, present in a D ‐alanine‐ or D ‐valine‐containing segment; ii) a condensation of a D ‐valine‐D ‐cysteine‐ or D ‐allo‐isoleucine‐D ‐cysteine‐containing segment with a D ‐alanine‐ or D ‐valine‐containing segment to directly assemble the corresponding seco‐acids; and iii) a macrocyclization of a seco‐acid using the Shiina method or the Mitsunobu method to construct the requisite 15‐ or 16‐membered macrolactone. The present synthesis has established the C5′′ stereochemistry of spiruchostatin B. In addition, HDAC inhibitory assay and the cell‐growth inhibition analysis of the synthesized depsipeptides determined the order of their potency and revealed some novel aspects of structure–activity relationships. It was also found that unnatural 5′′‐epi‐spiruchostatin B shows extremely high selectivity (ca. 1600‐fold) for class I HDAC1 (IC50=2.4 nM ) over class II HDAC6 (IC50=3900 nM ) with potent cell‐growth‐inhibitory activity at nanomolar levels of IC50 values.  相似文献   

7.
In the present investigation, a series of 4‐((3‐(trifluoromethyl)‐5,6‐dihydro‐[1,2,4]triazolo[4,3‐a]pyrazin‐7(8H)‐yl)methyl)benzenamine analogs 6a–o were synthesized and characterized by IR, NMR (1H and 13C), and mass spectra. All newly synthesized compounds 6a–o were prepared under conventional and microwave irradiation methods. These compounds obtained in higher yields and in shorter reaction times in the microwave irradiation method when compared with the conventional method. Synthesized compounds 6a–o were inspected for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra using an established XTT reduction menadione assay. Among the screened compounds, 6i (IC50: 1.82 μg/mL), 6j (IC50: 1.02 μg/mL), and 6k (IC50: 1.59 μg/mL) showed excellent activity. Furthermore, compound 6i showed MIC90 value of 16.02 μg/mL. In summary, the results indicate the identification of some novel, selective, and specific inhibitors against M. tuberculosis that can be explored further for the potential antitubercular drug.  相似文献   

8.
Novel sulfonamide containing diaryl pyrazoles were synthesized and were subsequently tested for their in vitro cyclooxygenase inhibitory assay. Compounds that showed promising in vitro COX‐2 IC50 values and selectivity indices were then evaluated for their in vivo anti‐inflammatory inhibition assay using standard carrageenan‐induced rat paw edema method. Two promising inhibitors were evaluated for ulcerogenic liability. X‐ray crystal structure of COX‐2 was taken from PDB entry COX‐2 (3LN1) having a resolution of 2.80 Å (Angstroms). Structural preparations for docking studies were accomplished using protein preparation wizard in Maestro 9.0. Compound 10b displayed reasonable COX‐2 inhibition (COX‐2 IC50 = 0.52 μM) and COX‐2 selectivity index (SI = 10.73) when compared with celecoxib (COX‐2 IC50 = 0.78 μM) and (SI = 9.51). In vivo anti‐inflammatory studies demonstrated 64.28% inhibition for 10b in comparison with the 57.14% for that of celecoxib itself. The results of ulcerogenic liability were also found comparable with standard celecoxib. Molecular docking studies revealed that all the designed molecules showed good interactions with receptor active site with glide scores in the range −13.130 to −10.624.  相似文献   

9.
Diverse kinase signaling pathways have been involved in the pathogenesis of endometriosis (EM), which can be modulated either by directly targeting the hub kinases or by indirectly regulating marginal members in the pathways. Here, a systematic kinase–inhibitor interaction profile was created for 8 naturally occurring compounds against 20 human protein kinases. The compounds are all non-sterid that have been reported as pharmacologically active molecular entities potential for EM therapeutics, while the kinases were curated via gene ontology terms enriched from the gene co-citation network with EM. The resulting profile was analyzed at structural, energetic and dynamic levels to identify druggable kinase–compound interactions. The compounds Gossypol, Curcumin and EGCG showed a similar interaction profile across these kinases; they can bind tightly to the top-listed kinases in gene ontology, while the compounds Marrubiin, Apigenin and DIM were predicted to exhibit generally weak affinity for the 20 curated kinases. The JNK kinase, a MAPK family member, was identified as a putative candidate of druggable target for EM therapeutics; the inhibitory activity of eight naturally occurring compounds as well as a sophisticated kinase inhibitor SP600125 against the JNK was tested using enzymatic activity analysis. As might be expected, the Gossypol and EGCG were determined to have high inhibitory activity at namomolar level (IC50 = 55 and 94 nM, respectively), which are comparable with or better than the positive control SP600125 (IC50 = 76 nM), while other tested compounds exhibited weak inhibition (IC50 > 100 nM) or bad potency (IC50 = n.d.) against the kinase.  相似文献   

10.
Two series of organotin(IV) complexes with Sn–S bonds on the base of 2,6‐di‐tert‐butyl‐4‐mercaptophenol ( L 1 SH ) of formulae Me2Sn(L1S)2 ( 1 ); Et2Sn(L1S)2 ( 2 ); Bu2Sn(L1S)2 ( 3 ); Ph 2 Sn(L1S)2 ( 4 ); (L1)2Sn(L1S)2 ( 5 ); Me3Sn(L1S) ( 6 ); Ph3Sn(L1S) ( 7 ) (L1 = 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl), together with the new ones [Me3SnCl(L2)] ( 8 ), [Me2SnCl2(L2)2] ( 9 ) ( L 2  = 2‐(N‐3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)‐iminomethylphenol) were used to study their antioxidant and cytotoxic activity. Novel complexes 8 , 9 of MenSnCl4 ? n (n = 3, 2) with Schiff base were synthesized and characterized by 1H, 13C NMR, IR and elemental analysis. The crystal structures of compounds 8 and 9 were determined by X‐ray diffraction analysis. The distorted tetrahedral geometry around the Sn center in the monocrystals of 8 was revealed, the Schiff base is coordinated to the tin(IV) atom by electrostatic interaction and formation of short contact Sn–O 2.805 Å. In the case of complex 9 the distorted octahedron coordination of Sn atom is formed. The antioxidant activity of compounds as radical scavengers and reducing agents was proved spectrophotometrically in tests with stable radical DPPH, reduction of Cu2+ (CUPRAC method) and interaction with superoxide radical‐anion. Moreover, compounds have been screened for in vitro cytotoxicity on eight human cancer cell lines. A high activity against all cell lines with IC50 values 60–160 nM was determined for the triphenyltin complex 7 , while the introduction of Schiff base decreased the cytotoxicity of the complexes. The influence on mitochondrial potential and mitochondrial permeability for the compounds 8 and 9 has been studied. It is shown that studied complexes depolarize the mitochondria but don't influence the calcium‐induced mitochondrial permeability transition.  相似文献   

11.
We report on a cytotoxic half‐sandwich iridium(III) complex [Ir(η5‐Cpph)(phen)(PB)]PF6 ( 1‐PB ), containing a monodentate coordinated O‐donor 4‐phenylbutyrato ligand (PB) belonging to the family of histone deacetylase inhibitors (HDACi); HCpph = (2,3,4,5‐tetramethylcyclopenta‐2,4‐dien‐1‐yl)benzene, phen = 1,?10‐phenanthroline. The solution behaviour studies indicated that complex 1‐PB partially hydrolysed in the mixture of methanol and water (1:4, v/v), resulting in the release of the PB ligand. The extent of the PB ligand release increased in the presence of 2 molar equiv. of the reduced glutathione (GSH). Complex 1‐PB exhibited comparable in vitro cytotoxicity against the cisplatin‐sensitive (IC50 = 15.8 μM) and ‐resistant (IC50 = 13.0 μM) variants of the A2780 human ovarian carcinoma cells, while its potency against the MRC‐5 human normal fibroblast cells was markedly lower (IC50 = 124.1 μM). The cytotoxicity studies revealed an ability of complex 1‐PB to overcome the acquired resistance against cisplatin, with the resistance factor (RF = 0.8) being markedly lower than for complex 1‐Cl (RF = 1.8) and cisplatin (RF = 2.9). The A2780 cell‐based flow cytometry experiments showed different cell cycle modification induced by complex 1‐PB and cisplatin, induction of production of reactive oxygen species, and higher mitochondria membrane potential depleted cell populations after the treatment by complex 1‐PB as compared with cisplatin. In the cell‐free assay, complex 1‐PB inhibited the HDAC activity to ca 66% as compared to ca 74% valid for NaPB. The [Ir(η5‐Cpph)(phen)(H2O)]2+ species ( 1‐OH 2 ), representing the hydrolysis product of both complexes 1‐PB and 1‐Cl , induced hydroxyl radical from the hydrogen peroxide, as proved by the EPR spin trapping studies with the 5‐(diethoxyphosphoryl)‐5‐methyl‐1‐pyrroline‐N‐oxide (DEPMPO) spin trap.  相似文献   

12.
A series of novel symmetrical trans‐bis‐Schiff bases ( 11a , 11b , 11c , 11d , 11e , 11f , 11g , 11h , 11i , 11j , 11k , 11l , 11m ) were designed and prepared as novel anticancer analogues, with the trans‐configuration confirmed by X‐ray diffraction. Preliminary inhibitory effects of these compounds on CML K562 cell growth were investigated, and the potential analogue 11e showed an excellent anti‐leukemia activity (IC50=6.35 μg/mL), which is higher than that of the clinical drug 5‐fluorouracil (IC50=8.48 μg/mL). Complete assignments had been achieved for the title compounds by spectroscopic techniques, and their structure–activity relationships have been studied.  相似文献   

13.
Four tetramethyl 4,4′‐(ethane‐1,2‐diylidene)bis[1‐R‐5‐oxo‐4,5‐dihydro‐1H‐pyrrole‐2,3‐dicarboxylate] compounds, denoted class (1), are a series of conjugated buta‐1,3‐dienes substituted with a heterocyclic group. The compounds can be used as dyes and pigments due to their long‐range conjugated systems. Four structures were studied using 1H NMR, 13C NMR and mass spectroscopy, viz. with R = 2,4,6‐trimethylphenyl, (1a), R = cyclohexyl, (1b), R = tert‐butyl, (1c), and R = isopropyl, (1d). A detailed discussion is presented regarding the characteristics of the three‐dimensional structures based on NMR analysis and the X‐ray crystal structure of (1a), namely tetramethyl 4,4′‐(ethane‐1,2‐diylidene)bis[5‐oxo‐1‐(2,4,6‐trimethylphenyl)‐4,5‐dihydro‐1H‐pyrrole‐2,3‐dicarboxylate], C36H36N2O10. The conjugation plane and stability were also studied via quantum chemical calculations.  相似文献   

14.
Most protein kinases phosphorylate multiple substrates, each of which induces different and sometimes opposing functions. Determining the role of phosphorylation of each substrate following a specific stimulus is challenging but is essential to elucidate the role of that substrate in the signaling event. Here we describe a rational approach to identify inhibitors of delta protein kinase C (δPKC), each inhibiting the phosphorylation of only one of δPKC′s substrates. δPKC regulates many signaling events and we hypothesized that a docking inhibitor of a given substrate to δPKC should selectively abrogate the phosphorylation of only that substrate, without affecting the phosphorylation of the other δPKC substrates. Here we report the development of selective inhibitors of three δPKC substrates (in vitro Kd≈3 nm ); two greatly reduced ischemia‐induced cardiac injury with an IC50 of ≈200 nm and the third had no effect, indicating that its respective substrate phosphorylation by δPKC has no role in the response to cardiac ischemia and reperfusion. The three inhibitors are highly specific; even at 1 μm , the phosphorylation of other δPKC protein substrates was unaffected. The rationale we describe is likely applicable for the development of other substrate‐specific inhibitors as well.  相似文献   

15.
A series of novel N‐aryl‐4‐(tert‐butyl)‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazol‐2‐amines synthesized in a green way. H2O2‐NaBr Brominating circulatory system was used in the synthesis of the key intermediate in a mild condition. All of the target compounds were confirmed by 1H NMR and elemental analysis and tested for their cytotoxicity against two different human cancer cell lines. The cytotoxicity assay revealed that some of the title compounds showed moderate to strong cytotoxic activities. Compound 2i was the most potent compound with the IC50 values of 9 μM against Hela cells and 15 μM against Bel–7402 cells, respectively.  相似文献   

16.
17.
A library of over 103 thousand compounds was screened for inhibitors of the IspD domain (2‐C‐methyl‐d ‐erythritol 4‐phosphate cytidylyl transferase domain) of the bifunctional IspDF protein from Helicobacter pylori using a photometric assay. Around 300 compounds showed IC50 values below 100 μm , and three compounds had IC50 values below 1 μm . A few IspD inhibitors could also inhibit the IspF domain (2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclopyrophosphate synthase) of the IspDF protein. The most potent IspD inhibitors were tested as growth inhibitors of H. pylori. Several compounds showed inhibition of bacterial growth with IC50 in the single‐digit μm range. The most potent growth inhibitor had an IC50 value of 3.4 μm . The most potent growth inhibitor without measurable effect on eukaryotic cell viability had an IC50 value of 7.2 μm .  相似文献   

18.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

19.
A comprehensive and highly selective method for detecting in bacterial supernatants a modified sulfur nucleoside, S‐adenosyl‐L‐methionine (SAM), and its metabolites, i.e., S‐adenosylhomocysteine (SAH), adenosine (Ado), 5′‐deoxy‐5′‐methylthioadenosine (MTA), adenine (Ade), S‐adenosyl‐methioninamine (dcSAM), homocysteine (Hcy) and methionine (Met), was developed. The method is based on reversed‐phase liquid chromatography with positive electrospray ionization (ESI+) coupled to a hybrid linear quadrupole ion trap (LTQ) and 7‐T Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). A gradient elution was employed with a binary solvent of 0.05 M ammonium formate at pH 4 and acetonitrile. The assay involves a simultaneous cleanup of cell‐free bacterial broths by solid‐phase extraction and trace enrichment of metabolites with a 50‐fold concentration factor by using immobilized phenylboronic and anion‐exchange cartridges. While the quantitative determination of SAM was performed using stable‐isotope‐labeled SAM‐d3 as an internal standard, in the case of Met and Ade, Met‐13C and Ade‐15N2 were employed as isotope‐labeled internal standards, respectively. This method enabled the identification of SAM and its metabolites in cell‐free culture of Pseudomonas aeruginosa grown in Davis minimal broth (formulation without sulphur organic compounds), with routine sub‐ppm mass accuracies (?0.27 ± 0.68 ppm). The resulting contents of SCSS‐SAM, SS‐dcSAM, MTA, Ado and Met in the free‐cell supernatant of P. aeruginosa was 56.4 ± 2.1 nM, 32.2 ± 2.2 nM, 0.91 ± 0.10 nM, 19.6 ± 1.2 nM and 1.93 ± 0.02 µM (mean ± SD, n = 4 extractions), respectively. We report also the baseline separation (Rs ≥1.5) of both diastereoisomeric forms of SAM (SCSS and SCRS) and dcSAM (SS and RS), which can be very useful to establish the relationship between the biologically active versus the inactive species, SCSS/SCRS and SS/RS of SAM and dcSAM, respectively. An additional confirmation of SAM‐related metabolites was accomplished by a systematic study of their MS/MS spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Phosphorylation and dephosphorylation of peptides by kinases and phosphatases is essential for signal transduction in biological systems, and many diseases involve abnormal activities of these enzymes. Herein, we introduce amphiphilic calixarenes as key components for supramolecular, phosphorylation‐responsive membrane transport systems. Dye‐efflux experiments with liposomes demonstrated that calixarenes are highly active counterion activators for established cell‐penetrating peptides, with EC50 values in the low nanomolar range. We have now found that they can even activate membrane transport of short peptide substrates for kinases involved in signal transduction, whereas the respective phosphorylated products are much less efficiently transported. This allows regulation of membrane transport activity by protein kinase A (PKA) and protein kinase C (PKC), as well as monitoring of their activity in a label‐free kinase assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号