首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Experiments yielded rapid rise in the Hall grxy and magnetoresistance ρxx, ρzz in Hg0.76Cd0.24Te to almost linear dependence in strong magnetic fields. This paper relates it to the states, which are extended at the Hall edge for ρxy and between the Hall edges for ρxx, ρzz, while bulk states are localized. Theory agrees with experiments, and suggests that thin enough samples may have zero magnetoresistance in strong enough magnetic fields.  相似文献   

2.
Magnetoresistance ρxx measurements are performed for a quasi-one-dimensional electron system over liquid helium in the gas-scattering region (the temperature range 1.3–2.0 K). The measurements show that, as the magnetic field increases, the magnetoresistance ρxx first decreases and then passes through a minimum and increases according to the law ρxxB 2. It is suggested that the negative magnetoresistance observed in the experiment is caused by the weak localization effects. The results of the experiment are in qualitative agreement with the theoretical model describing the weak localization effects in a one-dimensional nondegenerate electron system.  相似文献   

3.
Magnetoresistivity ρ xx and ρ xy and the acoustoelectronic effects are measured in p-Si/SiGe/Si with an impurity concentration p = 1.99 × 1011 cm−2 in the temperature range 0.3–2.0 K and an tilted magnetic field up to 18 T. The dependence of the effective g factor on the angle of magnetic field tilt θ to the normal to the plane of a two-dimensional p-Si/SiGe/Si channel is determined. A first-order ferromagnet-paramagnet phase transition is observed in the magnetic fields corresponding to a filling factor ν = 2 at θ ≈ 59°–60°.  相似文献   

4.
The magnetoresistance components ??xx and ??xy are measured in two p-Si/SiGe/Si quantum wells that have an anisotropic g-factor in a tilted magnetic field as a function of the temperature, field, and tilt angle. Activation energy measurements demonstrate the existence of a ferromagnetic-paramagnetic (F-P) transition for the sample with the hole density p = 2 × 1011 cm?2. This transition is due to the crossing of the 0?? and 1?? Landau levels. However, in another sample with p = 7.2 × 1010 cm?2, the 0?? and 1?? Landau levels coincide for angles ?? = 0?C70°. Only for ?? > 70° do the levels start to diverge which, in turn, results in the energy gap opening.  相似文献   

5.
S. S. Murzin 《JETP Letters》2008,88(11):745-746
Experimental data on the diagonal resistivity ρ xx of GaAs/AlGaAs heterostructures in a magnetic field at the filling factor ν = 1/2 have been compared with the existing theoretical predictions [B. I. Halperin et al., Phys. Rev. B 47, 7312 (1993) and F. Evers et al., Phys. Rev. B 60, 8951 (1999)]. The experimental results have been found to follow the relation ρ xx (1/2) ∝ n ?2 d ?1.64, which disagrees with the predictions.  相似文献   

6.
Quantum mechanical calculations of the magnetotransport coefficients of a modulated two-dimensional electron gas in a perpendicular magnetic field are presented using the Kubo method. The model modulation potential used is such that the effect of the steepness of the potential and its strength on the band part of the longitudinal resistivity ρxxand the Hall resistivity ρxycould be studied. In the extreme limit of a very steep potential, a two-dimensional square array of antidots is simulated. Impurity scattering is included in the self-consistent t-matrix approximation. The results show that for a strong lateral superlattice potential, ρxyis quenched in the low magnetic field regime and as the magnetic field increases there is a large negative Hall resistivity. The intensity of this negative peak is suppressed as the strength of the modulation potential is decreased. It is also shown that the height of the negative peak depends on the steepness of the potential. The longitudinal resistivity also has some interesting features. There are Aharonov–Bohm oscillations and a double peak structure which depends on both the strength of the modulation potential as well as its slope. The numerical results show that the position and intensity of the lower peak is not very sensitive to a change in the strength of the lattice potential or its steepness. However, the upper peak is greatly reduced when the lattice potential is diminished in strength. The double peak feature in ρxxand the negative peak and quenching of the Hall effect at low magnetic fields have been observed experimentally for antidots in both the quasiclassical and quantum regimes.  相似文献   

7.
The conductivities of n-type inversion layers in (100) surfaces of p-type silicon were measured extensively as functions of electron density in the inversion layer, the ambient temperature and the applied magnetic field. Measurements were made on the carefully fabricated four “classes” of MOS field-effect transistors whose maximum mobilities at 4·2K were 14,000, 8000, 6800 and 1500 cm2/V·sec, respectively. From the temperature dependence of the mobility, dominant momentum scattering was reasonably ascribed to surfon at 100 ~ 300 K. and degenerate or non-degenerate coulomb scattering at lower temperatures as treated by Stern and Howard. From the curves of conductivity vs temperature at low temperatures and low electron concentration for specimens with high mobilities, an activation energy of 1·2 meV, relating to the shallow bound states associated with the lowest electrin sub-band, was observed. The conductivity σxx of the inversion layer in a strong transverse magnetic field showed behaviors like those of completely free electrons without effects belonging to its material in its oscillation pattern. That is, the peak value of σxx as a function of the gate voltage VR dependend only on the Landau index. The σxx as a function of the magnetic field H at a constant VR showed a similar Shubnikov-de Haas (SdH) type oscillation to that of three dimensional one. The SdH oscillation gave an “apparent” g-value g* which ranges from 2 to 5 depending on the surface carrier density ns, due to the change in the ratios of the widths of the Landau levels to the level separation. The “reasonable” g-value of the conduction electrons in the inversion layer has been determined using a modified tilted magnetic field method. The g-value at the fixed magnetic field was independent of surface carrier density ns and tended to 2 in the extreme strong magnetic field.Discussion is made of the g-value relating to the Landau level width and the energy gaps in the density of states under strong magnetic field.  相似文献   

8.
An experimental method is presented to determine the valley splitting in n-channel Si inversion layers. The method is an extension of the “tilted field” experiment under conditions, where the valley splitting is resolved at all tilt angles. In the framework of Ohkawa and Uemura's theory, the bare splitting as well as the effective exchange interaction are obtained directly from the angles of coincidence. The bare valley splitting in the samples investigated is 0.15 meV/1012 cm-2 ·ns. Using experimentally determined parameters we have calculated the oscillatory conductivity σxx in a simplified version of Ohkawa and Uemura's model. The calculated curves reproduce the detailed structure of the experimental data for the various tilt angles of the experiment.  相似文献   

9.
S. S. Murzin 《JETP Letters》2009,89(6):298-300
It has been pointed out that, according to the two-parameter scaling theory, the magnetic-field position of the phases of the integer quantum Hall effect (IQHE) at ωcτ ? 1 is not determined by the filling factor ν = nh/eB. The position of the IQHE phases is given by the bare Hall conductivity σ xy 0 . In this regard, it has been shown that the diagonal resistivity in the magnetic field measured by Sakr et al. [Phys. Rev. B 64, 161308 (2001)] does not exhibit transitions between the σ xy = 3, 4 and 6 IQHE states on the one hand and the dielectric state on the other hand in contrast to the assertion by Sakr et al.  相似文献   

10.
The longitudinal ρ xx (B) and Hall ρ xy (B) magnetoresistances are investigated experimentally in the integer quantum Hall effect (QHE) regime in n-InGaAs/GaAs double quantum well nanostructures in the range of magnetic fields B = (0–16) T and temperatures T = (0.05–70) K before and after IR illumination. The results are evaluated within the scaling hypothesis with regard to electron-electron interaction.  相似文献   

11.
The fundamental theoretical approach derived in A.V. Emelyanenko et al., Phys. Rev. E 74, 011705 (2006) is complemented by a consideration of the influence of the homogeneous electric field on Sm- C A * , biaxial intermediate phases, and Sm-C * . The crucial role of the induced polarization is investigated for the first time. The evolution of any tilted smectic phase in the electric field is found to meet the two thresholds. The first threshold corresponds to the unwinding process, and the second one corresponds to the phase transition into the bi-domain structure of Sm-C * , where the tilt plane has some contribution either along or against the electric field, while the average direction may still be perpendicular to the electric field. The tilt plane in the monodomain (conventional) structure preceding the second threshold is the same in every unwound phase, and is perpendicular to the electric field. No 3D distortion in Sm- C A * is predicted on application of the electric field. The entire electric-field-temperature phase diagrams including the possibility of existence of the maximal number of tilted smectic phases are plotted and compared with the experimental ones. The numerical calculations in the framework of this fundamental study are done with help of AFLC Phase Diagram Plotter software developed by the author and available at his web page.  相似文献   

12.
The quantum Hall effect structure in the transverse magnetoresistance R xx and the Hall resistance R xy of heavily doped GaAs layers with a three-dimensional spectrum of the charge carriers is investigated for different field orientations. The characteristic structures (minima in R xx and plateaus in R xy ) shift much more slowly to higher fields and are suppressed much more rapidly in comparison with the expected angular dependence for a two-dimensional system. The results are discussed in terms of the anisotropic change of the three-dimensional conductivity tensor with magnetic field rotation. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 4, 305–308 (25 August 1998)  相似文献   

13.
S. S. Murzin 《JETP Letters》1998,67(3):216-221
The conductance of doped n-GaAs films is studied experimentally as a function of magnetic field and temperature in strong magnetic fields right up to the quantum limit (ħωc = E F). The Hall conductance G xy is virtually independent of temperature T until the transverse conductance G xx is quite large compared with e 2/h. In strong fields, when G xx becomes comparable to e 2/h, G xy starts to depend on T. The difference between the conductances G xx at the two temperatures 4.2 and 0.35 K depends only weakly on the magnetic field H over a wide range of magnetic fields, while the conductances G xx themselves vary strongly. The results can be explained by quantum corrections to the conductance as a result of the electron-electron interaction in the diffusion channel. The possibility of quantization of the Hall conductance as a result of the electron-electron interaction is discussed. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 3, 201–206 (10 February 1998)  相似文献   

14.
王海  周云松  王艾玲  郑鹉  陈金昌 《物理学报》1999,48(13):151-158
用磁控溅射法制备了Pt/Co/Pt/Ni系列样品,其中Ni层具有不同的厚度.通过测量样品的Kerr转角、椭偏率、折射率和吸收率,推算出了四个等效电导张量元σ1xx2xx1xy2xy随Ni层厚度的变化情况.再结合电导张量元与Kerr角的理论公式,分析了在Ni层厚度的变化过程中,每一个电导张量元对Kerr角的贡献;发现在短波段σ2xy起主导作用,而在长波段四个电导张量元共同起作用.经分析认为这是由于在Ni层的增厚过程中,Pt 5d带劈裂程度逐渐减小.与纯Pt/Co膜相比,在Ni层的厚度为0.10—0.23nm的范围内样品具有较低的居里温度和较高的Kerr角,这说明Pt/Co/Pt/Ni多层膜具有较高的应用价值. 关键词:  相似文献   

15.
Measurements of the thermal conductivity (kxx) and the thermal Hall effect (kxy) in high magnetic fields in Y- and Bi-based high-T c superconductors are presented. We describe the experimental technique and test measurements on a simple metal (niobium). In the high-T c superconductors kxx and kxy increase below T c and show a maximum in their temperature dependence. kxx has contributions from phonons and quasiparticle (QP) excitations, whereas kxy is purely electronic. The strong increase of kxy below T c gives direct evidence for a strong enhancement of the QP contribution to the heat current and thus for a strong increase of the QP mean free path. Using kxy and the magnetic field dependence of kxx we separate the electronic thermal conductivity ( k xx el ) of the CuO 2 -planes from the phononic thermal conductivity ( k xx ph ). In YBa2Cu3O 7 - δ k xx el shows a pronounced maximum in the superconducting state. This maximum is much weaker in Bi2Sr2CaCu2O 8 + δ , due to stronger impurity scattering. The maximum of k xx el is strongly suppressed by a magnetic field, which we attribute to the scattering of QPs on vortices. An additional magnetic field independent contribution to the maximum of kxx occurs in YBa2Cu3O 7 - δ , reminiscent of the contribution of the CuO-chains, as determined from the anisotropy in untwined single crystals. Our data analysis reveals that below T c as in the normal state a transport (τ) and a Hall ( ) relaxation time must be distinguished: The inelastic (i.e. temperature dependent) contribution to τ is strongly enhanced in the superconducting state, whereas displays the same temperature dependence as above T c . We determine also the electronic thermal conductivity in the normal state from kxy and the electrical Hall angle. It shows an unusual linear increase with temperature. Received 23 August 2000  相似文献   

16.
We present measurements of the diagonal Rxx and off-diagonal Rxy magnetoresistance under quantum Hall conditions on several high electron mobility transistors (HEMT) based on InxGa1-xAs quantum wells. From the magnetoresistance tensor we obtain the longitudinal conductivity σ xx . We study the transport mechanisms near the σ xx minima at temperatures ranging between 2 K and 35 K; activated transport is the dominant mechanism for temperatures above 7 K while variable range hopping conductivity is significant for lower temperatures. We show that electron-electron correlations should be taken into account to explain the conductivity vs temperature behaviour below 5 K. Finally, we study the behaviour of the localization length as a function of Landau level filling and obtain a critical exponent γ = 3.45±0.15. Received 6 June 2001 and Received in final form 16 October 2001  相似文献   

17.
IR magnetoreflection spectra, diagonal σ xx and off-diagonal σ xy components of the effective optical conductivity tensor, and magnetic properties of Fe(t x , Å)/Cr(10 Å) superlattices have been studied. The abrupt decrease in the amplitude of dissipative function ?ωImσ xy (ω) (ω is the cyclic frequency of light wave) in the superlattices with ultrathin Fe layers (t Fe = 3.2, 2.6, 2.1 Å) has been analyzed. It has been found that the magnetorefractive effect in nanostructures with ultrathin iron layers is due to scattering of conduction electrons by magnetic interfacial layers formed in the Cr matrix with complete consumption of deposited iron atoms. The parameters of the interfacial scattering of electrons in the spin-up (└) and spin-down (┌) conduction channels have been discussed.  相似文献   

18.
An exact solution to the Schrödinger equation for the ground state of two-dimensional Pauli electrons in a nonuniform transverse magnetic field H is presented for two cases. In the first case, the field H depends on a single variable, H = H(y), while in the second case, the field is axially symmetric, H = H(ρ), ρ2=x 2+y 2. The electron density distributions n = n(y) and n = n(ρ) that correspond to a completely filled lower level are found. For quasiuniform fields of fixed sign, the functions n(y) and n(ρ) are locally related to the magnetic field: n(y) = H(y)/?0 and n(ρ) = H(ρ)/?0, where ?0 = hc/|e| is a magnetic flux quantum. Magnetic fields are considered that are periodic, singular, and bounded in the plane xy. Finite electron objects in a nonuniform magnetic field are analyzed.  相似文献   

19.
The current-voltage characteristics $E(j)_{H_{treat} } = const$ of ceramic (granular) YBa2Cu3O6.95 samples preliminarily magnetized in different transverse magnetic fields H treat have been measured in a zero field (H ext = 0) at T = 77.3 K for elucidating specific features of dissipation in superconducting grains of high-temperature superconductors (HTSCs). The current-voltage curves measured in the range 0 ≤ H trapH c2J (where H trap is the magnetic field trapped as a result of the pretreatment in H treat and H c2J is the upper critical field of the Josephson weak links) have been used to construct the field dependences of the magnetoresistance ρA(H treat) j = const of superconducting grains. It has been established that the magnetoresistance ρA of the superconducting grains is significantly lower than the magnetoresistance ρJ for the Josephson medium. The dependence of ρA on H treat and on the transport current density j has been investigated. It has been shown that the dependences ρA(H treat) j = const exhibit a clearly pronounced tendency to saturation, ρsatur, and the value of ρsatur increases with increasing j. It has been found that the lower critical field H c1A of the superconducting grains strongly depends on the transport current density.  相似文献   

20.
Transport measurements in high magnetic fields have been performed on two-dimensional electron system (2DES) separated by a thin barrier layer from a layer of InAs self-assembled quantum dots (QDs). Clear feature of quantum Hall effect was observed in spite of presence of QDs nearby 2DES. However, both magnetoresistance, ρxx, and Hall resistance, ρxy, are suppressed significantly only in the magnetic field range of filling factor in 2DES ν<1 and voltage applied on a front gate . The results indicate that the electron state in QDs induces spin-flip process in 2DES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号