首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 ?, and MXAN, 1.99 ± 0.03 ?. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 ? (EXAFS) or 2.14 ± 0.06 ? (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 ? (EXAFS) or 3.0 ± 0.1 ? (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 ? that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 ? axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions.  相似文献   

2.
We investigated, both in the solid state and in aqueous solution, the coordination environment and stability behavior of four macrocyclic ligands (three N(2)S(2) and one N(3)S(2)) and of the corresponding Cu(II) complexes. The structural characterization in the solid state of the copper derivatives was performed by X-Ray Absorption Spectroscopy. Copper is found to be 4-fold coordinated with a CuN(2)S(2) environment with different Cu-S distances depending on the size of the macrocyclic ring. The EXAFS technique has indicated that nitrogen and sulfur atoms are more preferable to oxygen atoms as donor systems, without the evidence of coordination of the carboxylic moieties to copper in the first shell. The joint EXAFS and XANES study of the copper(II) complex with the N(3)S(2) ligand confirms the 4-fold coordination with an additional, long Cu-N interaction. The Cu(2+) complexation constants for one ligand were determined in aqueous solution. The results indicate that the species [CuL], although isolated in the solid state, is not the most abundant at the pH of blood serum. Instead, at pH 7.4 the protonated [Cu(HL)](+) species was found to be the most relevant. The behaviour of the copper complexes in the presence of the strong copper chelating bioagent human serum albumin was also examined in order to gain information on the stability of these compounds in biological fluids.  相似文献   

3.
The local structures of Ga(III) in aqueous oxalate and malonate complexes were studied by means of Ga K-edge EXAFS spectroscopy. Irrespective of the number and type of coordinated ligands, the EXAFS results showed very regular first coordination shells consisting of six oxygen atoms. Scattering paths from more distant atoms revealed that both oxalate and malonate form mononuclear chelate structures where one oxygen from each carboxylate group binds to Ga(III). Again, very little variation in bond distances and no changes in coordination modes were detected as the number of ligands coordinated to Ga(III) was varied. Based on the very close resemblance of IR spectra of oxalate and malonate complexes of Al(III), and the corresponding complexes of Ga(III), it is believed that the local structures of the Al(III) complexes are similar to those of the Ga(III) complexes in terms of ligand coordination modes and distortions. This conclusion was corroborated by results from theoretical frequency calculations.  相似文献   

4.
The formation of Cu(II) complexes with two isomeric quinoline-containing scorpiand-type ligands has been studied. The ligands have a tetraazapyridinophane core appended with an ethylamino tail including 2-quinoline (L1) or 4-quinoline (L2) functionalities. Potentiometric studies indicate the formation of stable CuL(2+) species with both ligands, the L1 complex being 3-4 log units more stable than the L2 complex. The crystal structure of [Cu(L1)](ClO(4))(2)·H(2)O shows that the coordination geometry around the Cu(2+) ions is distorted octahedral with significant axial elongation; the four Cu-N distances in the equatorial plane vary from 1.976 to 2.183 ?, while the axial distances are of 2.276 and 2.309 ?. The lower stability of the CuL2(2+) complex and its capability of forming protonated and hydroxo complexes suggest a penta-dentate coordination of the ligand, in agreement with the type of substitution at the quinoline ring. Kinetic studies on complex formation can be interpreted by considering that initial coordination of L1 and L2 takes place through the nitrogen atom in the quinoline ring. This is followed by coordination of the remaining nitrogen atoms, in a process that is faster in the L1 complex probably because substitution at the quinoline ring facilitates the reorganization. Kinetic studies on complex decomposition provide clear evidence on the occurrence of the molecular motion typical of scorpiands in the case of the L2 complex, for which decomposition starts with a very fast process (sub-millisecond timescale) that involves a shift in the absorption band from 643 to 690 nm.  相似文献   

5.
Kou HZ  Zhou BC  Wang RJ 《Inorganic chemistry》2003,42(23):7658-7665
A series of cyano-bridged heterotrimetallic complexes [CuL](2)Ln(H(2)O)(2)M(CN)(6).7H(2)O have been synthesized by the reactions of CuL (L(2)(-) = dianion of 1,4,8,11-tetraazacyclotradecane-2,3-dione), Ln(3+) (Ln = Gd or La), and [M(CN)(6)](3)(-) (M = Co, Fe, or Cr). X-ray diffraction analysis reveals that these complexes are isostructural and have a novel chain structure. The Ln(3+) ion is eight-coordinated by six oxygen atoms of two CuL and two water molecules and two nitrogen atoms of the bridging cyano ligands of two [M(CN)(6)](3)(-), while the [M(CN)(6)](3)(-) anion connects two Ln(3+) using two trans-CN(-) ligands giving rise to a chainlike structure. In the chain, every CuL group tilts toward the CN(-) ligand of adjacent [M(CN)(6)](3)(-) with the Cu-N(cyano) contacts ranging from 2.864(6) to 2.930(6) A. Magnetic studies on the CuGdCo complex (1) indicate the presence of ferromagnetic coupling between Cu(II) and Gd(III). The CuLaCr (5) and CuLaFe (2) complexes exhibit ferromagnetic interaction between paramagnetic Cu(II) and Cr(III)/Fe(III) ions through the weak cyano bridges (Cu-N(cyano) = 2.930(6) A for 2). A global ferromagnetic interaction is operative in the CuGdFe complex (3) with the concurrence of dominant ferromagnetic Cu(II)-Gd(III) and minor antiferromagnetic Gd(III)-Fe(III) as well as the ferromagnetic Cu(II)-Fe(III) interaction. For the CuGdCr complex (4), an overall antiferromagnetic behavior was observed, which is attributed to the presence of dominant antiferromagnetic Cr(III)-Gd(III) coupling and the minor ferromagnetic Cu(II)-Gd(III) and Cu(II)-Cr(III) interaction. Moreover, a spin frustration phenomenon was found in complex 4, which results from the ferro-ferro-antiferromagnetic exchanges in the trigonal Cu-Gd-Cr units. The magnetic susceptibilities of these complexes were simulated using suitable models. The magneto-structural correlation was investigated. These complexes did not show a magnetic phase transition down to 1.8 K.  相似文献   

6.
Three new metal-coordinating ligands, L(1), L(2), and L(3), have been prepared by appending o-, m-, and p-xylylguanidine pendants, respectively, to one of the nitrogen atoms of 1,4,7-triazacyclononane (tacn). The copper(II) complexes of these ligands are able to accelerate cleavage of the P-O bonds within the model phosphodiesters bis(p-nitrophenyl)phosphate (BNPP) and [2-(hydroxypropyl)-p-nitrophenyl]phosphate (HPNPP), as well as supercoiled pBR 322 plasmid DNA. Their reactivity toward BNPP and HPNPP is not significantly different from that of the nonguanidinylated analogues, [Cu(tacn)(OH(2))(2)](2+) and [Cu(1-benzyl-tacn)(OH(2))(2)](2+), but they cleave plasmid DNA at considerably faster rates than either of these two complexes. The complex of L(1), [Cu(L(1)H(+))(OH(2))(2)](3+), is the most active of the series, cleaving the supercoiled plasmid DNA (form I) to the relaxed circular form (form II) with a k(obs) value of (2.7 ± 0.3) × 10(-4) s(-1), which corresponds to a rate enhancement of 22- and 12-fold compared to those of [Cu(tacn)(OH(2))(2)](2+) and [Cu(1-benzyl-tacn)(OH(2))(2)](2+), respectively. Because of the relatively fast rate of plasmid DNA cleavage, an observed rate constant of (1.2 ± 0.5) × 10(-5) s(-1) for cleavage of form II DNA to form III was also able to be determined. The X-ray crystal structures of the copper(II) complexes of L(1) and L(3) show that the distorted square-pyramidal copper(II) coordination sphere is occupied by three nitrogen atoms from the tacn ring and two chloride ions. In both complexes, the protonated guanidinium pendants extend away from the metal and form hydrogen bonds with solvent molecules and counterions present in the crystal lattice. In the complex of L(1), the distance between the guanidinium group and the copper(II) center is similar to that separating the adjacent phosphodiester groups in DNA (ca. 6 ?). The overall geometry of the complex is also such that if the guanidinium group were to form charge-assisted hydrogen-bonding interactions with a phosphodiester group, a metal-bound hydroxide would be well-positioned to affect the nucleophilic attack on the neighboring phosphodiester linkage. The enhanced reactivity of the complex of L(1) at neutral pH appears to also be, in part, due to the relatively low pK(a) of 6.4 for one of the coordinated water molecules.  相似文献   

7.
The solution structure of Cu(II) in 4 M aqueous ammonia, [Cu(amm)](2+), was assessed using copper K-edge extended X-ray absorption fine structure (EXAFS) and Minuit XANes (MXAN) analyses. Tested structures included trigonal planar, planar and D2d -tetragonal, regular and distorted square pyramids, trigonal bipyramids, and Jahn-Teller distorted octahedra. Each approach converged to the same axially elongated square pyramid, 4 x Cu-Neq=2.00+/-0.02 A and 1 x Cu-Nax=2.16+/-0.02 A (EXAFS) or 2.20+/-0.07 A (MXAN), with strongly localized solvation shells. In the MXAN model, four equatorial ammonias averaged 13 degrees below the Cu(II) xy-plane, which was 0.45+/-0.1 A above the mean N4 plane. When the axial ligand equilibrium partial occupancies of about 0.65 ammonia and 0.35 water were included, EXAFS modeling found Cu-Lax distances of 2.16 and 2.31 A, respectively, reproducing the distances found in the crystal structures of [Cu(NH3)5](2+) and [Cu(NH3)4(H2O)](2+). A transverse axially localized solvent molecule was found at 2.8 A (EXAFS) or 3.1 A (MXAN). Six second-shell solvent molecules were also found at about 3.4+/-0.01 (EXAFS) or 3.8+/-0.2 A (MXAN). The structure of Cu(II) in 4 M pH 10 aqueous NH 3 may be notationally described as {[Cu(NH 3)4.62(H2O)0.38](solv)}(2+).6solv, solv=H2O, NH 3. The prominent shoulder and duplexed maximum of the rising K-edge XAS of [Cu(amm)](2+) primarily reflect the durable and well-organized solvation shells, not found around [Cu(H2O)5](2+), rather than two-electron shakedown transitions. Not accounting for solvent scattering thus may confound XAS-based estimates of metal-ligand covalency. [Cu(amm)](2+) continues the dissymmetry previously found for the solution structure of [Cu(H2O)5](2+), again contradicting the rack-bonding theory of blue copper proteins.  相似文献   

8.
A straightforward, facile synthesis of diamidodipyrromethenes (diamidodipyrrins, DADP (R,R')) is presented. These tetradentate ligands readily form complexes with metal ions such as Ni (2+) and Cu (2+) and can adopt different binding modes with these metals. One version of the ligand (DADP (Ph, iPr )) has been structurally characterized in its "free base" form, as a HBr salt, and as the Ni (2+) and Cu (2+) complexes. A symmetric NNOO donor set is found for the Cu (2+) complex in the solid state, involving two carbonyl oxygen atoms and two dipyrrin nitrogen atoms, and this coordination mode has been confirmed in solution by electron paramagnetic resonance. An asymmetric NNNO binding mode found for the Ni (2+) complex in the solid state persists in solution as revealed by (1)H NMR. The HBr salt form of the ligand shows an intriguing hydrogen-bonded head-to-head dimer arrangement. Experiments show that Cu (2+), but not Ni (2+), can mediate the rapid oxidation of the diamidodipyrromethane precursors to the diamidodipyrromethene ligands in the presence of dioxygen. The work here shows that diamidodipyrrins are a versatile new class of ligands in the area of nonporphyrinic pyrrole-based compounds that merit further investigation.  相似文献   

9.
A series of Cu(II) complexes Cu(2)[micro-pz](2)[HB(pz)(3)](2) (1), Cu[H(2)B(pz)(2)](2) (2), Cu[HB(pz)(3)](2) (3), Cu[HB(pz(Me2))(3)](2) (4), Cu[B(pz)(4)](2) (5) (pz=pyrazole), have been synthesized and characterized by elemental analysis, IR, UV-vis, X-ray diffraction, thermal analysis and theoretical analysis. The IR spectra give the Cu-N vibration modes at 322, 366, 344, 387, and 380 cm(-1) in complexes 1-5, respectively. The UV spectra show all the complexes have same UV absorption at 232 nm; there is another band at 332 nm for complexes 1, 2 and 4, while for complexes 3 and 5, the bands are at 272 and 308 nm, respectively. Complex 1 has a binuclear structure in which two pyrazole ligands bridge two Cu-Tp units. In 2-5, the Cu(II) centers are coordinated with dihydrobis(pyrazolyl)borate (Bp), hydrotris(pyrazolyl)borate (Tp), hydrotris(3,5-Me2pyrazolyl)borate (Tp'), tetrakis(pyrazolyl)borate (Tkp) respectively to form a mononuclear structure. The results of thermal analysis for complexes 1-5 are discussed too.  相似文献   

10.
水合双邻羟基苄氨乙酸铜配位结构的EXAFS研究   总被引:1,自引:0,他引:1  
用参数化经验公式, 从已知晶体结构的无水双邻羟基苄胺铜(II)[Cu(o-OC6H4CH2NH2)2, 1]的EXAFS数据中分离出振幅和相移, 拟合另一已知晶体结构的水合双邻羟基苄胺铜(II){[Cu(o-OC6H4CH2NH2)2.H2O].1/2.H2O, 2}的结构参数并进行检验后, 代入未知结构的水合双邻羟基苄氨乙酸铜(II)[Cu(o-HOC6H4CH2NHCH2CO2)2.H2O, 3]中进行曲线拟合, 得到配位原子、键长和配位数等结构信息. 结合红外光谱, 推断标题化合物中, Cu(II)与两个苄基氮和两个羧基氧形成一个平面四边形的配位结构.铜与羧基氧键长2.00A, Cu-N键长1.99A, 另有一个较远的配位水分子, 铜与水的氧距离2.95A. 配体上的酚基氧没有与Cu(II)配合. 因此, 邻羟基苄氨乙酸(HBG)与Cu(II)配位时表现为二啮形式.  相似文献   

11.
The properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L) and 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) have been synthesized. The X-ray structural analysis of {[Co(ClO4)(H2O)(L)][Co(H2O)2(L)]}(ClO4)3 shows two different metal sites in octahedral coordination. The EPR spectra of powdered samples of this compound are typical of distorted six-coordinated Co(II) ions in a high-spin (S=3/2) configuration, with the ground state being S=1/2 (g1=5.20, g2=3.20, g3=1.95). The EPR spectrum of [Cu(ClO4)(L)](ClO4) was simulated assuming an axial g tensor (g1=g2=2.043, g3=2.145), while that of [Cu(ClO4)(L1)](ClO4) slightly differs from an axial symmetry (g1=2.025, g2=2.060, g3=2.155). These results are compatible with a Cu(II) ion in square-pyramidal coordination with N2S2 as basal ligands. Single-crystal EPR experiment performed on [Cu(ClO4)(L1)](ClO4) allowed determining the eigenvalues of the molecular g tensor associated with the copper site, as well as the two possible orientations for the tensor. On the basis of symmetry arguments, an assignment in which the eigenvectors are nearly along the Cu(II)-ligand bonds is chosen.  相似文献   

12.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

13.
Mixtures of [Ph(3)PNPPh(3)](+)Cl(-) with CuBr(2) (or CuBr(2)+CuCl(2)) in ethanol/dichloromethane yield crystals containing three-coordinate copper(II) with mixed chloride and bromide ligands, namely [Ph(3)PNPPh(3)](+)[CuCl(0.9)Br(2.1)](-) (1) and [Ph(3)PNPPh(3)](+)[CuCl(2.4)Br(0.6)](-) (2). The trigonal-planar coordination of copper(II) is angularly distorted but unambiguous, as there is no other halide ligand within 6.7 A of the copper atom. Density functional theory (DFT) calculations on planar [CuClBr(2)](-) show that the energy surface for angle bending is very soft. Crystallisation in the presence of CH(3)CN yields [Ph(3)PNPPh(3)](+)[CuCl(0.7)Br(2.3)(NCCH(3))](-) (3), in which there is additional secondary coordination by NCCH(3) (Cu-N 2.44 A). DFT calculations of the potential energy surface for this secondary coordination show that it is remarkably flat (<3 kcal mol(-1) for a variation of Cu-N by 0.8 A). The crystal packing in 1, 2 and 3, which involves multiple phenyl embraces between [Ph(3)PNPPh(3)](+) ions and numerous C-H...Cl and C-H...Br motifs, is associated with intermolecular energies that are larger than the variations in intramolecular energies. For reference, the crystal structures of [Ph(3)PNPPh(3)(+)](2)[Cu(2)Cl(6)](2-) (4) and [Ph(3)PNPPh(3)(+)](2)[Cu(2)Br(6)](2-) (5) are described. We conclude 1) that three-coordinate copper(II) with monatomic halide ligands, although uncommon, can be regarded as normal, 2) that steric control by ligands is not necessary to enforce three-coordination, 3) that a hydrophobic aryl environment stabilises [Cu(Cl/Br)(3)](-), and 4) that the energy change in the transition from three- to four-coordinate copper(II) is very small (ca 5 kcal mol(-1)).  相似文献   

14.
15.
Structures of Cu(I) and Cu(II) complexes of sterically hindered tripyridine ligands RL = tris(6-methyl-2-pyridyl)methane (HL), 1,1,1-tris(6-methyl-2-pyridyl)ethane (MeL), and 1,1,1-tris(6-methyl-2-pyridyl)propane (EtL), [Cu(RL)(MeCN)]PF(6) (1-3), [Cu(RL)(SO(4))] (4-6), and [Cu(RL)(NO(3))(2)] (7-9), have been explored in the solid state and in solution to gain some insights into modulation of the copper coordination structures by bridgehead alkyl groups (CH, CMe, and CEt). The crystal structures of 1-9 show that RL binds a copper ion in a tridentate facial-capping mode, except for 3, where EtL chelates in a bidentate mode with two pyridyl nitrogen atoms. To avoid the steric repulsion between the bridgehead alkyl group and the 3-H(py) atoms, the pyridine rings in Cu(I) and Cu(II) complexes of MeL and EtL shift toward the Cu side as compared to those in Cu(I) and Cu(II) complexes of HL, leading to the significant differences in the nonbonding interatomic distances, H.H (between the 3-H(py) atoms), N.N (between the N(py) atoms), and C.C (between the 6-Me carbon atoms), the Cu-N(py), Cu-N(MeCN), and Cu-O bond distances, and the tilt of the pyridine rings. The copper coordination geometries in 4-6, where a SO(4) ligand chelates in a bidentate mode, are varied from a square pyramid of 4 to distorted trigonal bipyramids of 5 and 6. Such structural differences are not observed for 7-9, where two NO(3) ligands coordinate in a monodentate mode. The structures of 1-9 in solution are investigated by means of the electronic, (1)H NMR, and ESR spectroscopy. The (1)H NMR spectra show that the structures of 1-3 in the solid state are kept in solution with rapid coordination exchange of the pyridine rings. The electronic and the ESR spectra reveal the structural changes of 5 and 6 in solution. The bridgehead alkyl groups and 6-Me groups in the sterically hindered tripyridine ligand play important roles in modulating the copper coordination structures.  相似文献   

16.
Two series of new Cu(II) complexes derived from the reaction of copper acetate with the non-linear 1,2,3-triazole-based Schiff bases have successfully been synthesised. The structures of the ligands and its complexes were elucidated by elemental analysis, FT-IR, 1H-NMR and UV–visible spectroscopic techniques. The differential scanning calorimetry and polarizing optical microscopy supported the anisotropic properties of uncoordinated ligands in which the focal conic fan-shaped texture and/or broken fan-shaped texture characteristics of respective SmA and SmC phases were recorded. However, not all of their corresponding Cu(II) complexes are mesogenic. Although the iodo-substituted ligands with even parity C10H29 to C14H33 are non-stable and exhibit SmA phase which is not reproducible, the ultimate Cu(II) complexes show exclusively stable SmA phase. This observation can be ascribed to the enhanced colinearity and molecular anisotropic by the presence of Cu-N and Cu-O coordination modes. On the other hand, the comparison studies show that different positions of ortho-hydroxyl group affect the mesomorphic and thermal behaviour of ligands and Cu(II) complexes.  相似文献   

17.
本文报道了用先进的EXAFS及ESR等方法研究了羧酸型含氟的铜(Ⅱ)离聚体离子微区的内部精细结构,结果表明,铜离聚体的离子微区主要由羧酸根桥键的双核配位结构单元及平面四方形的配位结构单元等聚集而成。在双核配位结构单元中第一层为Cu~(2+)—O配位,配位数为4,配位键键长为1.96A,第二配位层为Gu~(2+)—Cu~(2+)配位,Cu~(2+)—Gu~(2+)间距为2.64A。平面四方形的配位结构单元Cu~(2+)—O的配位数为4,配位键键长为1.96A。共聚物中羧基含量对离聚体的基本配位结构单元和离子微区的精细结构影响较小,但对微区大小有影响。  相似文献   

18.
A series of copper(II) and copper(I) complexes have been synthesized with ligands combining 6-methyl-2,2'-bipyridines with cyclotriveratrylene (CTV) (1) and with catechol (2). The electrochemical, (1)H NMR, and mass spectrometry characterizations of these complexes are described and discussed. The six pendant bipyridines of ligand 1 allow for the formation of two trinuclear copper(I) complexes [(1)Cu(3)](BF(4))(3) differing only in the conformation "vic" or "int" adopted by the ligand to fit the tetrahedral cuprous ions. Similarly, 1 generates two trinuclear copper(II) complexes in which the conformation of the ligand fits the square planar geometry of cupric ions. In both the cuprous and cupric complexes, a conformational equilibrium exists. Ligand 2 bearing two methylbipyridines has proven to be a useful model of the coordinating sites of ligand 1. In this case, two homologous copper(I) complexes are obtained, [(2)Cu]BF(4) and [(2)(2)Cu(2)](BF(4))(2), modeling respectively two possible coordination conformations of ligand 1. With copper(II), ligand 2 yields only one complex [(2)Cu](CF(3)SO(3))(2), which allows for the unambiguous identification of the conformations observed for ligand 1 complexes. The different coordinating modes of ligand 1 in the complexes mentioned are in exchange but exhibit different physical properties, thus representing a new bistable system based on conformational isomerism which exhibits an electrochemical potential hysteresis. An equilibrium constant and thermodynamic data were obtained for this system by variable-temperature cyclic voltammetry. The influence of coordinating vs noncoordinating solvents was also studied.  相似文献   

19.
A freshly prepared solution of Pu(VI) in 2 M NaOH was oxidized to Pu(VII), via ozonolysis, while simultaneously collecting X-ray absorption spectra. Analyses of the XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) data, acquired throughout the in situ experiments, show a dioxo coordination environment for Pu(VI), PuO(2)(2+), typical for it and the hexavalent actinyl species of U and Np, and its evolution into a tetraoxo-coordination environment for Pu(VII), PuO(4)(-), like that known for Np(VII). The EXAFS data provide average Pu-O distances of 1.79(1) and 1.88(1) ?, respectively. The second coordination shells, also fit as O atoms, provide Pu-O distances of 2.29-2.32 ? that are independent of the Pu oxidation state. The coordination numbers for the distant O atoms in sums with those for the nearest O atoms are consistent with 6-O environments for both Pu(VI) and Pu(VII) ions in accordance with their previously proposed speciation as [Pu(VI)O(2)(OH)(4)](2-) and [Pu(VII)O(4)(OH)(2)](3-), respectively. This solution speciation accounts precisely for the Pu(VI) and Pu(VII) coordination environments reported in various solid state structures. The Pu(VII) tetraoxo-dihydroxo anion was found to have a half-life of 3.7 h. Its instability is attributed to spontaneous reduction to Pu(VI) and not to a measurable extent of disproportionation. We found no direct evidence for Pu(VIII) in the X-ray data and, furthermore, the stoichiometry of the oxidation of Cr(III) by Pu is consistent with that expected for a valence-pure Pu(VII) preparation by ozonation and, in turn, stoichiometrically equivalent to the established Np(VII)/Cr(III) redox reaction.  相似文献   

20.
A new one-dimensional polynuclear copper(II) complex [Cu(2)(mu(1,3)-SCN)(2)(mu'(1,3)-SCN)(2)(MPyO)(2)](n)(where MPyO = 4-methylpyridine N-oxide) has been synthesized and its crystal structure determined by X-ray crystallography. In the complex there exist two kinds of bridging coordination modes, namely, mu(1,3)-SCN(-) equatorial-equatorial (EE) bridging ligand and micro'(1,3)-SCN(-) equatorial-axial (EA) bridging ligand. Two micro(1,3)-SCN(-) EE bridging ligands coordinate two copper(II) ions in a binuclear unit, and the S atoms from the micro'(1,3)-SCN(-) EA bridging ligands as axial coordinated atoms link the binuclear units into one-dimensional chains. The ESR spectra have been investigated, and variable temperature (4-300 K) magnetic measurements were analyzed using a binuclear Cu(ii) magnetic interaction formula and indicate the existence of strong antiferromagnetic coupling with 2J=- 216.00 cm(-1) between bridged copper(II) ions. Density functional calculations have been carried out on this binuclear unit, yielding a similar singlet-triplet splitting. The mechanism of strong antiferromangetic interaction is revealed according to the calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号