首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Analytical letters》2012,45(14):2208-2216
A label-free thymine-rich sequence and a molecular beacon were synthesized to construct a highly sensitive and selective fluorescence probe for the determination of mercury(II). The aptamer of the thymine-rich sequence selectively bonded with mercury(II) with an accompanying change in the fluorescence intensity of the molecular beacon due to the higher affinity of the aptamer with mercury(II). The limit of detection was 12.7 nanomolar, and a linear relationship was obtained between the fluorescence and mercury(II) concentrations up to 1 micromolar. The assay was highly selective for the mercury(II) and not significantly affected by other metal ions.  相似文献   

2.
We provide a highly sensitive and selective assay to detect Hg2+ in aqueous solutions using single fluorescence-labeled G-quadruplex at room temperature. The mechanism is that AS1411 converted to G-quadruplex in the presence of potassium ion, and then, by this technique utilizing the high binding capacity of T–Hg2+–T makes the fluorescence dye come closer to GGG of AS1411 to causing fluorescence signal quenching by photoinduced electron transfer energy transfer. At physiological pH, the detection limit can be as low as 10 nM, with high selectivity toward Hg2+ ions over a lot of metal ions. The linear correlation existed between the fluorescence intensity and the concentration of Hg2+ over the range of 0–250 nM (R = 0.9920) in real sample. Accordingly, we expect this G-quadruplex-based sensor will be a potential application for detection of environmentally toxic mercury.  相似文献   

3.
We have developed a highly sensitive and selective fluorescence polarization assay method based on the specificity of the DNA cleavage reaction with the enhancement of gold nanoparticles (AuNPs) for assaying endonuclease activity and inhibition. This assay can detect EcoRI endonuclease down to 5.0×10(-4) U mL(-1) with a detection range from 5.0×10(-4) to 10 U mL(-1).  相似文献   

4.
The first potassium optode based on a protic chromoionophore immobilized in a hydrogel matrix is presented. The highly selective protic chromoionophore consists of a cryptohemispherand moiety and a trinitroanilino chromophore part. The acidifying power of potassium ions over sodium ions is 0.6 pH units. This correlates with the findings in solution. In contrast to several crown and aza-crown based chromophores the highly pre-organized moiety allows ion detection even in aqueous environment. The detection limit for potassium ions at ¶pH 7.7 is 5 μM.  相似文献   

5.
The first potassium optode based on a protic chromoionophore immobilized in a hydrogel matrix is presented. The highly selective protic chromoionophore consists of a cryptohemispherand moiety and a trinitroanilino chromophore part. The acidifying power of potassium ions over sodium ions is 0.6 pH units. This correlates with the findings in solution. In contrast to several crown and aza-crown based chromophores the highly pre-organized moiety allows ion detection even in aqueous environment. The detection limit for potassium ions at pH 7.7 is 5 microM.  相似文献   

6.
We demonstrate highly sensitive and selective potassium ion detection against excess sodium ions in water, by modulating the interaction between the G-quadruplex-forming molecular beacon aptamer (MBA) and cationic conjugated polyelectrolyte (CPE). The K(+)-specific aptamer sequence in MBA is used as the molecular recognition element, and the high binding specificity of MBA for potassium ions offers selectivity against a range of metal ions. The hairpin-type MBA labeled with a fluorophore and quencher at both termini undergoes a conformational change (by complexation with CPEs) to either an open-chain form or a G-quadruplex in the absence or presence of K(+) ions. Conformational changes of MBA as well as fluorescence (of the fluorophore in MBA) quenching or amplification via fluorescence resonance energy transfer from CPEs provide clear signal turn-off and -on in the presence or absence of K(+). The detection limit of the K(+) assays is determined to be ~1.5 nM in the presence of 100 mM Na(+) ions, which is ~3 orders of magnitude lower than those reported previously. The successful detection of 5'-adenosine triphosphate (ATP) with the MBA containing an ATP-specific aptamer sequence is also demonstrated using the same sensor scheme. The scheme reported herein is applicable to the detection of other kinds of G-rich aptamer-binding chemicals and biomolecules.  相似文献   

7.
We unveil a new homogeneous assay-using OliGreen and an ATP-binding aptamer-for the highly selective and sensitive detection of potassium ions.  相似文献   

8.
稀土离子(Er3+)可与荧光石墨烯量子点(GQDs)表面的含氧基团发生配位,在Er3+介导下形成高配位数的GQDs/Er3+配合物,引起GQDs聚集而使其荧光减弱.凝血酶(Tb)中的氮和氧等原子可与Er3+发生配位作用,从而与GQDs竞争结合Er3+,减弱了GQDs与Er3+的作用而使其荧光恢复.通过检测GQDs的荧光即可实现对Tb活性的高灵敏分析,构建了基于Er3+介导GQDs荧光开关的Tb传感方法,采用透射电镜、原子力显微镜、红外吸收光谱以及荧光光谱等对传感机理进行了研究.本方法对Tb的检出限低至0.049 nmol/L,其它蛋白质对Tb检测无明显干扰,实际样品中Tb加标回收率为98.0%~105.3%,相对标准偏差为0.6%~4.2%.  相似文献   

9.
基于茜素红和卟啉之间的荧光内滤效应,成功构建了一种分子识别事件与信号报告空间分离的、高选择性的荧光增强型诺氟沙星分析方法。结果表明,无诺氟沙星时,茜素红在420 nm处有最大吸收,这和卟啉的最大激发波长有较大重叠,茜素红和卟啉之间因发生内滤效应导致卟啉的荧光被有效猝灭;而茜素红与诺氟沙星的配合物在523 nm处有最大吸收,和卟啉的最大激发波长不再重叠,即诺氟沙星与茜素红之间的荷移反应破坏了该内滤效应,导致卟啉荧光恢复,据此,可将茜素红的吸收信号转变为高灵敏的卟啉的荧光信号。在最佳实验条件下,诺氟沙星的质量浓度在10 ~ 450 mg?L-1范围内与体系的相对荧光强度(IF/I0F)呈线性关系(r2=0.987 8),检出限(S/N=3)为5 mg?L-1。方法选择性好,常见金属离子和药物辅料不干扰诺氟沙星的测定。该研究利用内滤效应,将灵敏度较低的诺氟沙星紫外可见分析法转换为灵敏度较高的荧光分析法,且无需将分子识别单元和信号转导单元共价连接,无需复杂的荧光探针合成工艺,为设计该类药物的荧光分析法提供了新思路。  相似文献   

10.
Kim YS  Jurng J 《The Analyst》2011,136(18):3720-3724
We developed a homogeneous fluorescence assay for multiplex detection based on the target induced conformational change of DNA aptamers. DNA aptamers were immobilized on quantum dots (QDs), and QDs conjugated ssDNA was adsorbed on the surface of gold nanoparticles (AuNPs) by electrostatic interaction between uncoiled ssDNA and the AuNPs. Subsequently the fluorescence of QDs was effectively quenched by the AuNPs due to fluorescence resonance energy transfer (FRET) of QDs to AuNPs. In the presence of targets, the QDs conjugated aptamers were detached from AuNPs by target induced conformational change of aptamers, consequently the fluorescence of the QDs was recovered proportional to the target concentration. In this study, three different QD/aptamer conjugates were used for multiplex detection of mercury ions, adenosine and potassium ions. In a control experiment, all of the three targets were simultaneously detected with high selectivity.  相似文献   

11.
A new technology that enables the highly selective and sensitive detection of silver ions has been developed. The method takes advantage of the unique fluorescence property of a mismatched pyrrolo-dC (PdC)-modified duplex DNA, which serves as the key detection component, and the specific interaction of this duplex with silver ions.  相似文献   

12.
《Analytical letters》2012,45(10):1726-1736
A label-free method for sensitive determination of potassium ions was developed. The most commonly studied thrombin-binding aptamer was used as the molecular probe and crystal violet was chosen as a fluorescence signal reporter. The fluorescence of crystal violet was significantly enhanced when the crystal violet solution was mixed with the single-stranded thrombin-binding aptamer. However, in the presence of potassium ions, due to the formation of potassium induced G-quadruplex structures, the fluorescence decreased. Potassium ions were determined using the change in fluorescence. The conformational transformation was investigated by circular dichroism, and interferences caused by sodium ions were studied. This label-free method offers a simple procedure that induces minimum effects on the G-quadruplex formation. Under the optimized conditions, the method exhibited a linear range from 30–420 µM for potassium ions with a detection limit of 6 µM.  相似文献   

13.
Amperometric responses of all‐solid‐state ion‐selective electrodes, recorded under potentiostatic conditions, were studied on example of potassium‐selective sensors with polypyrrole solid contact, at potential corresponding to reduction of the solid contact material and accompanying transfer of potassium ions across the membrane. Selective and stable in time linear dependences of current vs. logarithm of analyte concentration were recorded, resulting from high membrane resistance and changing membrane potential. The influence of experimental parameters as applied potential or thickness of the membrane was discussed. Advantages of the amperometric mode compared to potentiometric one relate to possibility of tailoring analytical parameters (sensitivity, magnitude of the signal) as well as over one order of magnitude decrease of the detection limit. The latter effect is achieved due to externally forced incorporation of potassium ions from the solution to the membrane, compensating their spontaneous release to the sample solution. A method of experimental setup simplification was proposed, with application of two‐electrode system, which can be used in the absence of external polarization source. The required driving force for the current flow was assured by spontaneous oxidation process occurring at the second electrode, coupled with reduction of the solid contact material of the ion‐selective electrode. In this case also stable in time calibration plots can be recorded.  相似文献   

14.
He HZ  Ma VP  Leung KH  Chan DS  Yang H  Cheng Z  Leung CH  Ma DL 《The Analyst》2012,137(7):1538-1540
A G-quadruplex-based, label-free, switch-on fluorescence detection method has been developed for the selective detection of ATP in aqueous solution using crystal violet as a G-quadruplex-selective probe. The assay is highly simple and rapid, and does not require the use of fluorescent labeling.  相似文献   

15.
A highly selective and sensitive coumarin-based chemodosimeter 1 for Cu(2+) in water is reported in this work. 1 was designed and facilely synthesized by a one-step reaction with coumarin as a fluorophore and 2-picolinic acid as the binding moiety, which showed very week fluorescence in buffer solution, and its fluorescence was considerably enhanced by the addition of Cu(2+) at room temperature in 5 min. Mechanism study suggested that Cu(2+) promoted the hydrolysis of 1 via the catalytic sensing cycle, generating a highly fluorescent product 7-hydroxycoumarin with fluorescence signal greatly amplified. The probe exhibited remarkably selective fluorescence enhancement to Cu(2+) over other metal ions at 454 nm, with a detection limit of 35 nM Cu(2+). Under optimal condition, 1 was successfully used for the determination of Cu(2+) in fetal equine serum and two water samples.  相似文献   

16.
The macrobicyclic molecule, 21-(9-anthrylmethyl)-4,17,13,16-tetraoxa-1,10,21-triazabicyclo [8.8.5]tricosane-19,23-dione, I, was designed, synthesized and characterized as a fluoroionophore for the selective, optical detection of lithium ions. Compound I is based on a bridged diazacrown structure, which provides a semirigid binding framework. Binding takes place by electrostatic interactions between the oxygen atoms of the crown and the cation and is transduced to fluorescence emission from an attached anthracene fluorophore. In a 75:25 dichloromethane/tetrahydrofuran solvent mixture, I acts as an intramolecular electron transfer "off-on" fluorescence switch, exhibiting a greater than 190-fold enhancement in fluorescence emission intensity in the presence of lithium ions. The relative selectivity of I for lithium ions over sodium, potassium and ammonium ions was found to be log K(Li+,Na+) approximately -3.36, log K(Li+,K+) approximately -1.77 and log K(Li+,NH4+) approximately -2.78.  相似文献   

17.
A microfabricated device has been developed for fluorimetric detection of potassium ions without previous separation. It is based on use of a fluorescent molecular sensor, calix–bodipy, specially designed to be sensitive to and selective for the target ion. The device is essentially made of a Y-shape microchannel moulded in PDMS fixed on a glass substrate. A passive mixer is used for mixing the reactant and the analyte. The optical detection arrangement uses two optical fibres, one for excitation by a light-emitting diode, the other for collection of the fluorescence. This system enabled the flow-injection analysis of the concentration of potassium ions in aqueous solutions with a detection limit of 0.5 mmol L−1 and without interference with sodium ions. A calibration plot was constructed using potassium standard solutions in the range 0–16 mmol L−1, and was used for the determination of the potassium content of a pharmaceutical pill. Figure Photography of the microfluidic channel showing the ridges in the PDMS substrate at the top of the channel  相似文献   

18.
The detection and quantification of disease-related proteins play critical roles in clinical practice and diagnostic assays. We present an affinity probe capillary electrophoresis/laser-induced fluorescence polarization (APCE/LIFP) assay for detection of human thrombin using a specific aptamer as probe. In the APCE/LIFP assay, the mobility and fluorescence polarization of complex are measured simultaneously during CE analysis. The affinity complex of human thrombin can be well separated from unbound aptamer on CE and clearly identified on the basis of its fluorescence polarization and migration. Because of the binding favorable G-quartet conformation potentially involved in the specific aptamer, it was assumed that monovalent and bivalent cations promoting the formation of a stable G quadruplex conformation in the aptamer may enhance the binding of the aptamer and thrombin. Therefore, we investigated the effects of various metal cations on the binding of human thrombin and the aptamer. Our results show that cations like K+ and Mg2+ could not stabilize the affinity complex. Without the use of typical cations, a highly sensitive assay of human thrombin was developed with the corresponding detection limits of 4.38 × 10−19 and 2.94 × 10−19 mol in mass for standard solution and human serum, respectively.  相似文献   

19.
The detection of toxins in shellfish through reliable methods is essential for human health preservation and prevention of economic losses in the aquaculture industry. Although no human intoxication has been unequivocally linked to gymnodimines or spirolides, these phycotoxins are highly toxic by intraperitoneal injection causing false positives in lipophilic toxin detection by the mouse bioassay. Based on the detection of molecular interactions by fluorescence polarization an inhibition assay was developed using fluorescent α-bungarotoxin and nicotinic acetylcholine receptor-enriched membranes of Torpedo marmorata to detect gymnodimine and 13-desmethyl C spirolide. Both toxins, classified into the cyclic imine group, inhibit the interaction of α-bungarotoxin with Torpedo nicotinic acetylcholine receptors in the nM range. In this study we analyze the matrix effect of four shellfish species on the fluorescence polarization assay. Mussels, clams, cockles and scallops were extracted with acetone and sequentially partitioned with n-hexane and chloroform. The interference of these shellfish extracts with the α-bungarotoxin fluorescence or its binding to the nicotinic acetylcholine receptor was lower than 11%. The average recovery rates of gymnodimine and 13-desmethyl C spirolide using these solvents were 90.6 ± 7.8% and 89.6 ± 3.2%, respectively with variations among species. The quantification range of this fluorescence polarization assay for gymnodimine and 13-desmethyl C spirolide in all tested species was 80-2000 μg kg−1 and 85-700 μg kg−1 of shellfish meat, respectively. This assay format can be used to detect gymnodimine and 13-desmethyl C spirolide in shellfish as a screening assay.  相似文献   

20.
The synthesis of a novel, and highly selective Fe3+ ion sensor based on anthrone-spirolactam and its quinoline hybrid ligand is reported. The designed ligand displayed selective detection of Fe3+ ions with enhanced fluorescence emission. The complexation of Fe3+ ion led to a red shift of 32 nm from 420 nm to 452 nm, and a several fold increase in intensity with fluorescent green emission. The complexation (detection) of Fe3+ ions with ligand resulted in chelation enhanced fluorescence and intramolecular charge transfer through the inhibition of C=N isomerization. This hybrid sensor shows high sensitivity and selectivity, spontaneous response, and works on a wide pH range a minimum detection limit of 6.83 × 10−8 M. Importantly, the sensor works through the fluorescence turn-on mechanism that overcomes the paramagnetic effect of Fe3+ ions. The binding mechanism between the ligand and the Fe3+ ions was established from the Job's plot method, optical studies, Fourier transfor infrared spectroscopy, NMR titration, fluorescence life-time studies, and density functional theory optimization. The sensor displayed excellent results in the quantification of Fe3+ ions from real water samples. Furthermore, due to its biocompatibility nature, fluorescent spotting of Fe3+ ions in live cells revealed its bioimaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号