首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystalline–noncrystalline structure and its structural changes from thermal treatments for ethylene ionomers have been investigated with solid‐state 13C and 23Na NMR spectroscopy. 13C spin–lattice relaxation time (T1C) measurements reveal that as‐received ethylene ionomers have much enhanced molecular mobility in the crystalline region in comparison with conventional polyethylene samples. By appropriate annealing, however, polyethylene‐like morphological features reflecting T1C behavior can also be observed. 13C spin–spin relaxation time (T2C) measurements for the noncrystalline region reveal the existence of two components with different T2C values, and these two components have been assigned to the crystalline–amorphous interfacial and rubbery–amorphous components. These results indicate that the structure of the major part of the noncrystalline region in the ethylene ionomers is similar to that of bulk‐crystallized polyethylene samples, regardless of possible ionic aggregates. The origin of the lower temperature endothermic peak in the heating process of the differential scanning calorimetry curve observed for the as‐received sample has also been examined somewhat in detail. As a result, it is proposed that the melting of smaller crystallites produced during storage at room temperature is the origin of the lower temperature peak. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1142–1153, 2002  相似文献   

2.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

3.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

4.
Half titanocenes (CpCH2CH2O)TiCl2 (1), (CpCH2CH2OCH3)TiCl3 (2), and CpTiCl3 (3), activated by methylaluminoxane (MAO) were tested in copolymerization of ethylene with internal olefins such as cyclopentene. All the catalysts were able to give incorporation of cyclopentene in polyethylene matrix. 13C NMR analysis of obtained copolymers showed that the catalytic systems have low regiospecificity. In fact, in ethylene–cyclopentene copolymers, cyclic olefin inserts with both 1,2 and 1,3‐enchainment. X‐ray powder diffraction analysis of these copolymers confirmed that 1,2 inserted cyclopentene units are excluded from crystalline phase, whereas 1,3‐cyclopentene units are included, giving rise to expansion of unit cell of crystalline polyethylene. Titanium‐based catalysts were investigated also in the copolymerization of ethylene with E and Z‐2‐butene. Only complex (1) was able to give copolymers and 13C NMR analysis of products showed 2‐3, 1‐3, and 1‐2 insertion of 2‐butene. Differential scanning calorimetry analysis displayed that ethylene–cyclopentene, as well as ethylene‐2‐butene, copolymers are crystalline and their melting point decreases by increasing the comonomer content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4725–4733, 2008  相似文献   

5.
Blends of poly(vinyl chloride) (PVC) with Poly(N‐vinyl pyrrolidone) (PVP) were investigated by Fourier infrared spectroscopy (FTIR) and high‐resolution solid‐state 13C cross‐polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The intermolecular interactions between PVP and PVC are weaker than the self‐association of PVP and the inclusion of the miscible PVC results in the decreased self‐association of PVP chains, which was evidenced by the observation of high‐frequency shift of amide stretching vibration bands of PVP with inclusion of PVC. This result was further substantiated by the study of 13C CP/MAS spectra, in which the chemical shift of carbonyl resonance of PVP was observed to shift to a high field with inclusion of PVC, indicating that the magnetic shielding of the carbonyl carbon nucleus is increased. The proton spin‐lattice relaxation time in the laboratory frame (T1 (H)) and the proton spin‐lattice relaxation time in the rotating frame (T(H)) were measured as a function of the blend composition to give the information about phase structure. It is concluded that the PVC and PVP chains are intimately mixed on the scale of 20–30Å. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2412–2419, 1999  相似文献   

6.
We have designed and synthesized rod–coil–rod triblock copolymers of controlled molecular weight by two‐step nitroxide‐mediated radical polymerization, where the rod part consists of “mesogen‐jacketed liquid crystalline polymer” (MJLCP). The MJLCP segment examined in our studies is poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (MPCS) while the coil part is polyisoprene (PI). Characterization of the triblock copolymers by GPC, 1H and 13C NMR spectroscopies, TGA, DSC confirmed that the triblock copolymers were comprised of microphase‐separated low Tg amorphous PI and high Tg PMPCS blocks. Analysis of POM and 1D, 2D‐WAXD demonstrated that the triblock copolymers formed nematic liquid crystal phase. Morphological studies using TEM indicated the sample formed lamellar structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5949–5956, 2007  相似文献   

7.
The structure of laboratory‐made polyHIPEs was successfully characterized by cross‐polarity/magic‐angle spinning, solid‐state 13C NMR experiments. The signals of vinyl groups appeared in the spectrum of the polyHIPE precursor PH? CH?CH2, which was prepared by the polymerization of the divinylbenzene continuous phase from a highly concentrated reverse emulsion. This material was chemically modified by the regioselective free‐radical addition of thiols to the pendant vinyl groups. Spectra of materials modified by the grafting of C8 and C12 alkyl chains, PH? SC8 and PH? SC12, respectively, were produced. The signals of the vinyl groups disappeared in favor of methylene groups. This experiment clearly established that the alkyl chains were covalently bound to the polymer. To elucidate the dynamic aspect of long chains in polyHIPE, we measured the 13C spin–lattice relaxation times (T1) of PH? SC12 from 25 to 100 °C with variable‐temperature, solid‐state, high‐resolution 13C NMR spectroscopy, revealing a strong variation in T1 along the alkyl side chain. Furthermore, the crystallinity of a wide range of chemically modified polyHIPEs, including PH? SC12, was studied with pulse 1H NMR. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 956–963, 2001  相似文献   

8.
We investigated the dynamics and structure of the aliphatic side chains of a randomly grafted copolymer, obtained through the chemical modification of poly(epichlorohydrin) with potassium 3,4,5‐tris(dodecyloxy)benzoate, with solid‐state 13C NMR. Below 283 K, the aliphatic chains partially crystallized in an all‐anti conformation. The calorimetric data were compatible with an orthorhombic packing. Below 323 K, the polymer exhibited a columnar mesophase. Spin–lattice relaxation times were determined in this temperature range and at 333 K, that is, in the isotropic phase. In the liquid‐crystalline state, some carbons exhibited a double decay in the spin–lattice relaxation, and this was attributed to presence of the liquid‐crystalline phase. This hypothesis was supported by a conformational analysis performed by molecular modeling. The activation energies of the relaxation processes in the mesophase were also estimated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2099–2111, 2005  相似文献   

9.
This article establishes the processing–microstructure–motion–property relationship of high‐speed melt‐spun nylon‐6 fibers. From solid‐state 1H NMR T (spin–lattice relaxation time in the rotating frame) relaxation studies, all nylon‐6 fibers spun at 4500–6100 m/min showed three‐component exponential decay with the time constants T1ρ,I, T1ρ,II, and T1ρ,III, indicating that there existed three different motional phases. These phases were assigned to immobile crystalline, intermediate rigid amorphous, and mobile amorphous regions. The determination of the correlation time (τc) of the respective phases provided information about the local molecular mobility of each phase with respect to the spinning speed. As the spinning speed increased, τc of the crystalline region increased (4500–5200 m/min) and then reached a plateau. However, τc for the rigid amorphous region increased from 5200 m/min onward, indicating that the rigid amorphous chains were more oriented and constrained in the spinning speed range of 5500–6100 m/min. The drastic increase of the maximum thermal stress for all fibers from 5500 to 6100 m/min was coincident with the τc characteristics of the rigid amorphous region. The significant increase in tenacity and Young's modulus and the large decrease in elongation at break at 5500–6100 m/min were also in good agreement with the local molecular motion of the intermediate rigid amorphous phase in the nylon‐6 fibers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 993–1000, 2001  相似文献   

10.
The miscibility and thermal properties of poly(N‐phenyl‐2‐hydroxytrimethylene amine)/poly(N‐vinyl pyrrolidone) (PHA/PVP) blends were examined by using differential scanning calorimetry (DSC), high‐resolution solid‐state nuclear magnetic resonance (NMR) techniques, and thermogravimetric analysis (TGA). It was found that PHA is miscible with PVP, as shown by the existence of a single composition‐dependent glass transition temperature (Tg) in the whole composition range. The DSC results, together with the 13C crosspolarization (CP)/magic angle spinning (MAS)/high‐power dipolar decoupling (DD) spectra of the blends, revealed that there exist rather strong intermolecular interactions between PHA and PVP. The increase in hydrogen bonding and in Tg of the blends was found to broaden the line width of CH—OH carbon resonance of PHA. The measurement of the relaxation time showed that the PHA/PVP blends are homogeneous at least on the scale of 1–2 nm. The proton spin‐lattice relaxation in both the laboratory frame and the rotating frame were studied as a function of the blend composition, and it was found that blending did not appreciably affect the spectral densities of motion (sub‐Tg relaxation) in the mid‐MHz and mid‐KHz frequency ranges. Thermogravimetric analysis showed that PHA has rather good thermal stability, and the thermal stability of the blend can be further improved with increasing PVP content. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 237–245, 1999  相似文献   

11.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane‐crosslinked epoxy resin (ER) and poly(?‐caprolactone) (PCL) were investigated by means of Fourier transform infrared (FTIR) spectroscopy and high‐resolution solid‐state NMR spectroscopy. FTIR investigations indicated that there were specific intermolecular interactions between ER and PCL and that the intermolecular hydrogen‐bonding interactions were weaker than the self‐association in pure epoxy. The intermolecular hydrogen bonding was considered to be the driving force for the miscibility of the thermosetting blends. For the examination of the miscibility of the thermosetting blends at the molecular level, high‐resolution solid‐state 13C cross‐polarity/magic‐angle spinning (CP‐MAS) NMR spectroscopy was employed. The line width of 13C CP‐MAS spectra decreased with increasing PCL contents, and the chemical shift of the carbonyl carbon resonance of PCL shifted to a low field with an increasing epoxy content in the blends. The proton spin–lattice relaxation experiments in the laboratory frame showed that all the blends possessed identical, composition‐dependent relaxation times (i.e., the proton spin–lattice relaxation times in the laboratory frame), suggesting that the thermosetting blends were homogeneous on the scale of 20–30 nm in terms of the spin‐diffusion mechanism, and this was in a good agreement with the results of differential scanning calorimetry and dynamic mechanical analysis. For the examination of the miscibility of the blends at the molecular level, the behavior of the proton lattice relaxation in the rotating frame was investigated. The homogeneity of the thermosetting blends at the molecular level was quite dependent on the blend composition. The PCL‐lean ER/PCL blends (e.g., 70/30) displayed a single homogeneous amorphous phase, and the molecular chains were intimately mixed on the segmental scale. The PCL‐rich blends displayed biexponential decay in experiments concerning the proton spin–lattice relaxation times in the rotating frame, which was ascribed to amorphous and crystalline phases. In the amorphous region, the molecular chains of epoxy and PCL were intimately mixed at the molecular level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1099–1111, 2003  相似文献   

12.
A biodegradable diblock copolymer of poly(ϵ‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was synthesized and characterized. The inclusion compound (IC) of this copolymer with α‐cyclodextrin (α‐CD) was formed and characterized. Wide‐angle X‐ray diffraction showed that in the IC crystals α‐CDs were packed in the channel mode, which isolated and restricted the individual guest copolymer chains to highly extended conformation. Solid‐state 13C NMR techniques were used to investigate the morphology and dynamics of both the bulk and α‐CD‐IC isolated PCL‐b‐PLLA chains. The conformation of the PCL blocks isolated within the α‐CD cavities was similar to the crystalline conformation of PCL blocks in the bulk copolymer. Spin–lattice relaxation time (T1C) measurements revealed a dramatic difference in the mobilities of the semicrystalline bulk copolymer chains and those isolated in the α‐CD‐IC channels. Carbon‐observed proton spin–lattice relaxation in the rotating frame measurements (TH) showed that the bulk copolymer was phase‐separated, while, in the IC, exchange of proton magnetization through spin‐diffusion between the isolated guest polymer chains and the host α‐CD was not complete. The two‐dimensional solid‐state heteronuclear correlation (HetCor) method was also employed to monitor proton communication in these samples. Intrablock exchange of proton magnetization was observed in both the bulk semicrystalline and IC copolymer samples at short mixing times; however, even at the longest mixing time, interblock proton communication was not observed in either sample. In spite of the physical closeness between the isolated included guest chains and the host α‐CD molecules, efficient proton spin diffusion was not observed between them in the IC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2086–2096, 2005  相似文献   

13.
tert‐Butyl, cyclohexyl, n‐propyl, and n‐dodecyl vinyl ethers have been used as comonomers with styrene and methyl methacrylate using 13C‐enriched samples of azobis(isobutyronitrile) and benzoyl peroxide as initiators at 60°C. Examination by 13C‐NMR spectroscopy of either (13CH3)2C(CN) or Ph13COO end‐groups in the products has shown that the vinyl ethers have low reactivities toward the 2‐cyano‐2‐propyl radical but high reactivities toward the benzoyloxy radical. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 771–777, 1999  相似文献   

14.
Monodisperse porous particles of poly(divinylbenzene) prepared by the activated swelling method have been investigated by solid‐state 13C crosspolarization magic‐angle spinning (CPMAS) nuclear magnetic resonance (NMR) relaxation measurements. Homopolymeric combinations of two porogens (toluene and 2‐ethylhexanoic acid) and two monomers (meta‐ and para‐divinylbenzene) were studied. Residual vinyl groups were systematically reacted with increasing amounts of bromine, producing 20 different polymers samples for which we measured crosspolarization times, TCH, proton rotating frame spin‐lattice relaxation, T, 13C spin‐lattice relaxation, T, and proton spin‐lattice relaxation, T. These parameters were chosen to reflect expected changes in a wide range of frequencies of motion as a function of structure. Relative differences in the molecular mobility of the major functional groups (aromatic, vinyl and aliphatic) is related to initial reactants used, vinyl concentration, relative reactivity of vinyl groups, distribution of vinyl groups, pore structure, and degree of crosslinking. Variable temperature 1H combined rotation and multiple pulse NMR (CRAMPS) was used to derive activation energies for selected samples via measurement of the proton spin‐lattice relaxation time, T. Irreversible thermal effects were observed in ambient temperature relaxation after heating to temperatures in the range of 393–418 K. Simple univariate statistical analyses failed to reveal consistent correlations among the known variables. However, the application of more sophisticated multivariate and neural network analyses allowed excellent structure–property predictions to be made from the relaxation time data. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1307–1328, 1999  相似文献   

15.
The effect of the copolymerization temperature and amount of comonomer in the copolymerization of ethylene with 1,3‐cyclopentadiene, dicyclopentadiene, and 4‐vinyl‐1‐cyclohexene and the rac‐Et[Ind]2ZrCl2–methylaluminoxane metallocene system was studied. The amount of comonomer present in the reaction media influenced the catalytic activity. Dicyclopentadiene was the most reactive comonomer among the cyclic dienes studied. In general, copolymers synthesized at 60 °C showed higher catalytic activities. Ethylene–dicyclopentadiene copolymers with high comonomer contents (>9%) did not show melting temperatures. 1,3‐Cyclopentadiene dimerized into dicyclopentadiene during the copolymerization, giving a terpolymer of ethylene, cyclopentadiene, and dicyclopentadiene. A complete characterization of the products was carried out with 1H NMR, 13C NMR, heteronuclear chemical shift correlation, differential scanning calorimetry, and gel permeation chromatography. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 471–485, 2002; DOI 10.1002/pola.10133  相似文献   

16.
The microphase structure of a series of polystyrene‐b‐polyethylene oxide‐b‐polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid‐state NMR, DSC, wide and small angle X‐ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene‐oxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and 1H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 55–64, 2010  相似文献   

17.
The effect of tin fluorophosphate‐glass (Pglass) nanoparticles on the polyamide‐6 (PA6) matrix in Pglass/PA6 hybrids has been investigated by 13C solid‐state nuclear magnetic resonance (NMR). The crystallinity determined by direct‐polarization 13C NMR combined with longitudinal relaxation‐time (T1C) filtering varied between 31 and 44%. T1C‐filtered 13C spectra with cross polarization clearly showed resonances of both the α‐ and γ‐crystalline phases of PA6, typically at ratios near 45:55, while the similarly processed neat polymer contained only the α‐phase. This suggests that the Pglass promotes the growth of the γ‐crystalline phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 857–860, 2008  相似文献   

18.
Copolymers of 2‐methylene‐1,3‐dioxepane (MDO) and methyl acrylate (MA) containing ester units both in the backbone and as pendant groups were synthesized by free‐radical copolymerization. The influence of reaction conditions such as the polymerization time, temperature, initiator concentration, and comonomer feed ratio on the yield, molecular weight, and copolymer composition was investigated. The structure of the copolymers was confirmed by 1H NMR, 13C NMR, and IR spectroscopy. Differential scanning calorimetry indicated that the copolymers had a random structure. An NMR study showed that hydrogen transfer occurred during the copolymerization. The reactivity ratios of the comonomers were rMDO = 0.0235 and rMA = 26.535. The enzymatic degradation of the copolymers obtained was carried out in the presence of proteinase K or a crude enzyme extracted from earthworms. The experimental results showed that the higher ester molar percentage in the backbone caused a faster degradation rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2898–2904, 2003  相似文献   

19.
A novel vinyl‐hydantoin monomer, 3‐(4′‐vinylbenzyl)‐5,5‐dimethylhydantoin, was synthesized in a good yield and was fully characterized with Fourier transform infrared (FTIR) and 1H NMR spectra. Its homopolymer and copolymers with several common acrylic and vinyl monomers, such as vinyl acetate, acrylonitrile, and methyl methacrylate, were readily prepared under mild conditions. The polymers were characterized with FTIR and 1H NMR, and their thermal properties were analyzed with differential scanning calorimetry studies. The halogenated products of the corresponding copolymers exhibited potent antibacterial properties against Escherichia coli, and the antibacterial properties were durable and regenerable. The structure–property relationships of the polymers were further discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3348–3355, 2001  相似文献   

20.
To further extend temperature range of application and low temperature performance of the ethylene‐styrene copolymers, a series of poly(ethylene‐styrene‐propylene) samples with varying monomer compositions and relatively low glass‐transition temperatures (Tg = −28 – 22 °C) were synthesized by Me2Si(Me4Cp)(N‐t‐Bu)TiCl2/MMAO system. Since the 13C NMR spectra of the terpolymers were complex and some new resonances were present, 2D‐1H/13C heteronuclear single quantum coherence and heteronuclear multiple bond correlation experiments were conducted. A complete 13C NMR characterization of these terpolymers was performed qualitatively and quantitatively, including chemical shifts, triad sequence distributions, and monomer average sequence lengths. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 340–350  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号