首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study shows that the reaction of different salts of the same metal with sterically crowded dihydrazone bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) in ethanol/aqueous media gives complexes of different stereochemistry. While the reaction of zinc(II) and copper(II) sulphate with dihydrazone yields tetrahedral complexes, the zinc(II) and copper(II) chlorides give square pyramidal and distorted octahedral complexes, respectively. On the other hand, nickel(II) sulphate and chloride, both give high-spin octahedral complexes with dihydrazone, manganese sulphate gives low-spin octahedral and manganese(II) chloride gives high-spin octahedral complexes. The reaction of these complexes with KF has been investigated. All of the products have been characterized by analytical, magnetic moment and molar conductivity data. The structures of the complexes have been established by spectroscopic studies.  相似文献   

2.
The complexes of transition metal ions with an azamacrocyclic tetradentate nitrogen donor [N4] ligand viz. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetramethyltricyclo[15.3.1.1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) have been synthesized. All the complexes were found to have general composition M(L)X2 [where M = manganese(II), cobalt(II), nickel(II) and copper(II) and X = Cl- & NO3-]. All the complexes are characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, EPR spectral and cyclic voltammetric studies. An octahedral geometry was assigned for Mn(II), Co(II) and Ni(II) complexes and tetragonal for Cu(II) complexes. The biological actions of the ligand and complexes have been screened in vitro against many bacteria and pathogenic fungi to study their comparative capacity to inhibit the growth.  相似文献   

3.
The coordinating behavior of a new dihydrazone ligand, 2,6-bis[(3-methoxysalicylidene)hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with α=98.491(10)°, β=110.820(10)° and γ=92.228(10)°. The cell dimensions are a=10.196(7)?, b=10.814(7)?, c=10.017(7)?, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso)=2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible.  相似文献   

4.
Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.  相似文献   

5.
Manganese(II), cobalt(II), nickel(II), and copper(II) complexes are synthesized with a novel tetradentate ligand, viz. 1,5,9,13-tetraaza-6,14-dioxo-8,16-diphenylcyclohexadecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to be nonelectrolyte nature for Mn(II), Co(II), and Cu(II) whereas 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X(2)] and [Ni(L)]X(2), respectively (where M = Mn(II), Co(II), and Cu(II) and X = Cl- and NO(3-)). On the basis of IR, electronic, and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.  相似文献   

6.
Summary 2,2-Dipyridylmethane reacts with iron(II), cobalt(II), nickel(II) and copper(II) salts to form complexes of a varied stereochemistry depending upon the metal and the anion involved,Pseudo-tetrahedral, octahedral and square-planar complexes containing this ligand have been prepared and characterized by elemental analysis, conductivity data, room temperature magnetic moments and electronic spectra.  相似文献   

7.
Summary The syntheses of several new coordination complexes of nickel(II), cobalt(II), manganese(II), copper(II), zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) with new Schiff bases derived from 2-benzothiazolecarbohydrazide and salicylaldehyde or 2-hydroxy-1-naphthaldehyde are described. These complexes have been characterised by elemental analyses, electrical conductance, magnetic susceptibility, molecular weight, i.r. and electronic spectra. The Schiff bases behave as dibasic and tridentate ligands coordinating through the ONO donor system and form complexes of the types NiL · 3H2O, MnL · 2H2O, CoL · 2H2O, CuL, ZnL · H2O, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complexes exhibit subnormal magnetic moments indicating the presence of an antiferromagnetic exchange interaction, whereas the nickel(II), cobalt(II) and manganese(II) complexes behave normally at room temperature. Zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) complexes are diamagnetic; the zinc (II) complexes are tetrahedral, the copper(II) complexes are square planar, all the other complexes are octahedral. Thev(C=N),v(C-O),v(N-N) andv(C-S) shifts have been measured in order to locate the Schiff base coordination sites.  相似文献   

8.
Summary Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL · 3H2O, CoL · 2H2O, CuL, MnL · 2H2O, ZnL · H2O, Zr(OH)2(LH)2, Zr(OH)2L · 2MeOH, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese (II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic.oxygen, enolic oxygen and azomethine nitrogen.  相似文献   

9.
Summary The thermodynamic proton-ligand and metal ligand stability constants of the newN-o-chlorophenylbenzohydroxamic acids with manganese, nickel, copper, zinc, cadmium and mercury have been determined in 1 : 1 dioxan : water at 25°.The stability of the complexes mostly follow the ligand basicity order and also the metal ion electron affinities as measured by their ionization potential. The stability constants of the metal complexes follow the order: Cu(II) > Zn(II) > Ni(II) > Mn(II) > Hg(II) > Cd(II).  相似文献   

10.
Metal complexes of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with Schiff base derived from 2,5-dihydroxyacetophenone and s-benzyldithiocarbazate have been synthesized and characterized by elemental analysis, thermogravimetric analysis, molar conductance, molecular weight, magnetic susceptibility measurements, and electronic and infrared spectra. The molar conductivity data show them to be nonelectrolytes. The Schiff base behaves as a tridentate dibasic ONS donor towards metal ions. Thermal analyses indicate the presence of water in the complexes, making them six and four coordinates. The solid state electrical conductivity of the ligand and its complexes has been measured in the temperature range 313–414 K and the complexes are found to show semiconducting behavior. The antibacterial activities of the ligand and its complexes have also been screened against various organisms and it is observed that the coordination of metal ions has a pronounced effect on the bacterial activity of the ligand.  相似文献   

11.
The interaction of two symmetrically branched tris-cyclam derivatives based on 1,3,5-trimethylenebenzene and phloroglucinol cores with nickel(II), copper(II), zinc(II) and cadmium(II) is reported. All four metal ions yield solid complexes in which the metal : ligand ratio is 3 : 1. For both ligand types, spectrophotometric titrations confirm the formation of nickel(II) and copper(II) complexes of similar 3 : 1 stoichiometry in dimethyl sulfoxide. Visible spectral, electrochemical, magnetic moment, ESR and NMR studies have been performed to probe the nature of the respective complexes. Where appropriate, the results from the above metal-ion studies are compared with those from parallel investigations in which the corresponding (substituted) mono-cyclam analogues were employed as the ligands. A structural determination employing a poorly diffracting crystal of the trinuclear nickel(II) complex of the tris-cyclam ligand incorporating a 1,3,5-trimethylenebenzene core was successfully carried out with the aid of a synchrotron radiation source. A nickel ion occupies each cyclam ring in a square-planar coordination arrangement, with each cyclam ring adopting the stable trans-III configuration.  相似文献   

12.
The synthesis of a new Schiff base containing 1,10-phenanthroline-2,9-dicarboxaldehyde and 2-mercaptoethylamine is described. The reaction of 1,10-phenanthroline-2,9-dicarboxaldehyde with 2-mercaptoethylamine leads to 2,9-bis(2-ethanthiazolinyl)-1,10-phenanthroline (I) which undergoes rearrangement when reacted with manganese, nickel, copper or zinc ions to produce complexes of the tautomeric Schiff base 2,9-bis[2-(2-mercaptoethyl)-2-azaethene]-1,10-phenanthroline (L). The [M(L)Cl2] complexes [where M = Mn(II), Ni(II), Cu(II) and Zn(II) ions] were characterized by physical and spectroscopic measurements which indicated that the ligand is a tetradentate N4 chelating agent.  相似文献   

13.
Ozutsumi K  Taguchi Y  Kawashima T 《Talanta》1995,42(4):535-541
The complexation of urea (ur) with manganese(II), nickel(II) and zinc(II) ions has been studied by titration calorimetry in N,N-dimethylformamide (DMF) containing 0.4M (C(2)H(5))(4) NBF(4) as a constant ionic medium at 25 degrees C. The calorimetric data were well explained in terms of the formation of [Mn(ur)](2+), [Mn(ur)(2)](2+) and [Mn(ur)(4)](2+) for manganese(II), [Ni(ur)](2+) for nickel(II) and [Zn(ur)](2+) and [Zn(ur)(2)](2+) for zinc(II), and their formation constants, reaction enthalpies and entropies were determined. The complexation of the nickel(II)-urea system in DMF has also been studied by means of spectrophotometric titration and electronic spectra of individual nickel(II) complexes were determined. On the basis of the stepwise thermodynamic quantities and the individual electronic spectra of the complexes, it is revealed that the [Mn(ur)](2+), [Mn(ur)(2)](2+), [Ni(ur)](2+), [Zn(ur)](2+) and [Zn(ur)(2)](2+) complexes have a six-coordinate octahedral structure, while the [Mn(ur)(4)](2+) complex has a four-coordinate tetrahedral structure.  相似文献   

14.
Formation constants are reported for the levulinate complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) at 25 degrees in 0.1M chloride medium. In addition, results are presented for the corresponding acetate complexes for comparison. Protonation constants for the two ligands are also reported.  相似文献   

15.
Abstract

The preparation and characterization of some cobalt(II), nickel(II) and copper(II) complexes with 7-chloro-2-methylamino-5-phenyl-3H-1, 4-benzodiazepin-4-oxide and 1, 3-dihydro-7-nitro-5-phenyl-2H-1, 4-benzodiazepin-2-one are reported. The complexes have been studied by means of magnetic susceptibility measurements, infrared and far infrared spectra, electronic spectra and conductivity measurements. Assignments for the metal-ligand and metal-halide bands have also been made. The evidence suggests that the cobalt(II) and nickel(II) complexes have a pseudotetrahedral symmetry, whereas the copper(II) complexes are octahedral.  相似文献   

16.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

17.
A new Schiff base has been synthesized from 4-aminoantipyrine and 3-formylsalicylic acid. The ligand has a dianionic tetradentate compartmental OONO donor system. The cobalt(II), nickel(II), copper(II) and dioxouranium(VI) complexes exist in phenolato-bridged dinuclear species, while palladium(II) gives a mononuclear complex with free –COOH groups. The complexes have been characterized by elemental analyses, i.r., u.v.-vis, thermal and magnetic measurements.  相似文献   

18.
Mononuclear macrocyclic complexes of manganese(II ), cobalt(II ) and nickel(II ) perchlorate using 10 different oxaazamacrocyclic ligands (L1 — L10) have been prepared and characterized. The complexation reactions with the diiminic ligands were obtained by template condensation of the appropriate dialdehyde and diamine precursors; the reduced macrocycle complexes were synthesized using a direct route. The complexes have been characterized by elemental analyses, molar conductivity, mass spectrometry, IR, UV‐vis spectroscopy, diffuse reflectance and magnetic susceptibility measurements.  相似文献   

19.

The first 2-pyridylethanol (pyet) complexes of manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) saccharinates, were synthesized and characterized by elemental analyses, magnetic measurements, UV-Vis, and IR spectroscopic techniques. Crystal and molecular structures of the iron(II) and copper(II) complexes were determined by single crystal X-ray diffractometry. The experimental data showed that all the complexes are mononuclear with a general formula [M(H2O)2(pyet)2](sac)2, where sac is the saccharinate anion. All the metal ions are octahedrally coordinated by two aqua and two pyet ligands. The pyet ligand acts as a bidentate ligand through its amine nitrogen and hydroxyl oxygen atoms forming a six-membered chelate ring, while the sac ions remain outside the coordination sphere. All the complexes are isomorphous with a monoclinic space group P21/n and Z = 2.  相似文献   

20.
Five new cobalt(II), nickel(II), and copper(II) complexes with Schiff bases have been synthesized. The Schiff bases have been prepared by the condensation of monopotassium 1-amino-8-hydroxynaphthalene-2,4-disulfonate with benzoin (L1) or 2-hydroxy-1-naphthaldehyde (L2). The compounds have been identified and studied by elemental analysis, X-ray diffraction, thermogravimetry, measurements of magnetic susceptibility and electrical conductivity, and IR, ESR, and diffuse reflectance spectroscopy. The dimeric (with oxo bridges) structure of the Co(II) complex with L1 has been additionally confirmed by the EXAFS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号