首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
A laser-based technique is presented that can be used to measure the instantaneous velocity field of the continuous phase in sprays and aerosols. In contrast to most well established laser-based velocity measurement techniques, this method is independent of particle seeding and Mie scattering. Instead of that it is based on gaseous flow tracers and laser-induced fluorescence (LIF). Inhomogeneous tracer gas distributions, which are created by an incomplete, turbulent mixing process, are exploited for flow tracing. The velocity field can be measured close to the droplets, because frequency-shifted LIF is separated from Mie scattering by optical filters. Validation tests and results from a water spray in air are given. Accuracy and spatial resolution are discussed in detail. Received: 26 April 1999/Accepted: 16 October 1999  相似文献   

2.
3.
This paper describes a novel derivative of the PIV method for measuring the velocity fields of droplets and gas phases simultaneously using fluorescence images rather than Mie scattering images. Two-phase PIV allows the simultaneous and independent velocity field measurement of the liquid phase droplets and ambient gas in the case of two-phase flow mixing. For phase discrimination, each phase is labelled by a different fluorescent dye: the gas phase is seeded with small liquid droplets, tagged by an efficient fluorescent dye while the droplets of the liquid phases are tagged by a different fluorescent dye. For each phase, the wavelength shift of fluorescence is used to separate fluorescence from Mie scattering and to distinguish between the fluorescence of each phase. With the use of two cross-correlation PIV cameras and adequate optical filters, we obtain two double frame images, one for each phase. Thus standard PIV or PTV algorithms are used to obtain the simultaneous and independent velocity fields of the two phases. Because the two-phase PIV technique relies on the ability to produce two simultaneous and independent images of the two phases, the choice of the labelling dyes and of the associated optical filter sets is relevant for the image acquisition. Thus a spectroscopic study has been carried out to choose the optimal fluorescent dyes and the associated optical filters. The method has been evaluated in a simple two-phase flow: droplets of 30–40 μm diameter, produced by an ultrasonic nozzle are injected into a gas coflow seeded with small particles. Some initial results have been obtained which demonstrate the potential of the method.  相似文献   

4.
Micro-PIV技术--粒子图像测速技术的新进展   总被引:7,自引:0,他引:7  
王昊利  王元 《力学进展》2005,35(1):77-90
Micro-PIV是近年来发展起来的一种微尺度流动测速技术.它是传统PIV测量与光学显微技术相结合的一种整场、瞬态、定量测量方法, 其基本测速原理与传统PIV相同, 但在示踪粒子选择、图像获取和处理等方面两者存在较大差别.Micro-PIV突破了传统微尺度流体力学测量手段的局限性, 使得对微尺度流动元件的研究从过去只能给出流量、阻力特性等有限信息逐步转向对全流场内流结构的直接测量上, 并且达到了相当高的分辨率和测量精度.本文对近几年Micro-PIV技术发展状况进行了总结和分析, 论述了Micro-PIV技术与传统PIV的主要区别以及具体的处理技术, 反映了其在科学与工程中的应用,并对此项技术的发展作了展望.   相似文献   

5.
The turbulence structure of a horizontal channel flow with microbubbles is experimentally investigated using combined particle image velocimetry (PIV) in order to clarify the mechanism of drag reduction caused by microbubbles. A new system which simultaneously measures the liquid phase and the dispersed bubbles is proposed, based on a combination of particle tracking velocimetry (PTV), laser-induced fluorescence (LIF) and the shadow image technique (SIT). To accurately obtain the velocity of the liquid phase, tracer particles which overlap with the bubble shadow images are almost entirely eliminated in the post-processing. Finally, the turbulence characteristics of the flow field are presented, including measurements for both phases, and the bubble effect on the turbulence is quantified.  相似文献   

6.
A two-color particle image velocimetry (PIV) technique has been applied to a single-cylinder motored research engine. Two-color PIV is a quantitative planar velocity measurement technique that can unambiguously determine the velocity magnitude and direction.

The work includes the development of an interrogation system, a series of computer simulations to determine the performance of the technique under various conditions, the comparison of these results to similar ones obtained for an autocorrelation PIV system, and a test of the technique by reconstructing the velocity field of a uniform jet flow.

The technique was then applied to the in-cylinder flow field of a motored single-cylinder, cup-in-head, research engine. A total of 27 instantaneous velocity fields were obtained at a single measurement plane for a single operating condition of the engine. The data were analyzed to yield ensemble-averaged velocity and velocity fluctuation.  相似文献   


7.
Development of digital particle imaging velocimetry for use in turbomachinery   总被引:12,自引:0,他引:12  
Digital Particle Imaging Velocimetry (DPIV) is a powerful measurement technique, which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. The instantaneous planar velocity measurements obtained with PIV make it an attractive technique for use in the study of the complex flow fields encountered in turbomachinery. The ability to acquire multiple measurement points of comparable accuracy to LDV results in reduced runtime and enables the study of both transient and steady state flow phenomena. Many of the same issues encountered in the application of LDV to rotating machinery apply in the application of PIV. Techniques for optical access, light sheet delivery, CCD camera technology and particulate seeding are discussed. Results from the successful application of the PIV technique to both the blade passage region of a transonic axial compressor and the diffuser region of a high speed centrifugal compressor are presented. Both instantaneous and time-averaged flow fields were obtained. The 95% confidence intervals for the velocity estimates were also determined. Received: 16 November 1998/Accepted: 10 April 1999  相似文献   

8.
The stratification of two fluid phases, namely gas and liquid, within flow distribution devices, such as headers, that have side or bottom oriented fluid pipe connections, or discharges, has shown relevance to loss-of-coolant accidents in nuclear power plants. Under critical conditions the gas phase could entrain into the predominantly liquid discharge flow causing the fluid quality to be dramatically affected. This condition is referred to as the onset of gas entrainment (OGE) phenomenon and it occurs at a specific critical liquid height which changes with the Froude number. The liquid velocity field at the OGE is of importance, for example, to theorists who may find a semi-empirical approach to model this phenomenon. Stereoscopic particle image velocimetry (PIV) technique is an excellent candidate for non-intrusively investigating the velocity field. The liquid-phase velocity field was investigated for three discharge Froude numbers at the OGE. It was found that the stereoscopic PIV could be used to extract the velocity field experimentally, yet a high degree of error was found in the region closest to the discharge. The relative error was determined through conservation of mass by comparing the flow rate obtained with the PIV data to that obtained using a flow meter. In summary it was found that the number of image planes used, the resolution of the image planes, and consequently the number of vectors used to calculate the flow rate, all contributed a great deal to the relative error.  相似文献   

9.
To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.  相似文献   

10.
由空压机提供的气体通过—排微小直径的喷嘴进入静止水体,形成水气两相流流场。在单相PIV和PTV技术的基础上,研究稀疏气液两相流情况下气泡的速度场分布。PIV算法采用快速傅立叶互相关分析法,而PTV算法需要获得每幅图像中每个气泡的形心,根据连续图像中的粒子对,计算速度。用PIV和PTV两种算法处理求出气泡的速度并对两种方法进行比较,其最终研究成果可应用于流体及多相流的流量测技术,提高我们进行低密度气液两相流相关研究的测量水平。同时为水气两相流的数值分析和理论研究提供流场测试的数据。  相似文献   

11.
粒子图像测速技术研究进展   总被引:38,自引:1,他引:37  
粒子图像测速技术(PIV)作为一种全新的无扰、瞬态、全场速度测量方法,在流体力学及空气动力学研究领域具有极高的学术意义和实用价值.本文对PIV技术的原理、分类作了简要地介绍,详细归纳和评述了现有的各种速度信息的提取方法,并对拓扑图论、神经网络、遗传算法、模糊聚类等新技术在PIV中的应用以及三维PIV技术、两相流PIV测试技术进行了介绍.指出当前PIV技术除了向三维和多相流方向发展外,如何提高PIV的测量精度以及缩短计算时间仍然是目前研究的主要目标.PIV技术随着计算机技术、激光技术和CCD性能的发展,必将取得更大的发展与突破   相似文献   

12.
风沙两相流测量技术研究进展   总被引:4,自引:0,他引:4  
杨斌  王元  王大伟 《力学进展》2006,36(4):580-590
围绕风沙两相流的测量, 归纳了过去几十年来在风沙动力学研究中所使用的风速测量技术和输沙率测量装置.着重讨论了高频测量在目前风沙动力学研究中的必要性, 分析了传统风速和输沙率测量装置的优缺点.对新一代光学测量技术------PIV在风沙两相流测量中的应用进行了较为详细的探讨.指出PIV测速技术在风沙两相流研究中具有广泛的应用前景, 使用PIV测速技术可以得到风沙流结构、两相速度场等宏观信息, 同时也可以进行单个颗粒运动状态的研究.   相似文献   

13.
A new experimental procedure for performing simultaneous, phase-separated velocity measurements in two-phase flows is introduced. Basically, the novel particle image velocimetry (PIV) technique is a combination of the three most often used PIV techniques in multiphase flows: PIV with fluorescent tracer particles, shadowgraphy, and the digital phase separation with a masking technique. The combination of these three independent measurement techniques is achieved by shifting the background intensity of a PIV recording to a higher, but uniform gray value level. In order to combine the advantages of these multiphase-PIV methods, a new PIV set-up was developed. With this set-up the velocity distributions of the two phases are measured simultaneously with only one b/w camera. This experimental set-up is aimed at providing a means for characterizing the modification of turbulence in the liquid phase by bubbles. This phenomenon is often called "pseudo-turbulence".  相似文献   

14.
The study is an examination of two-phase dispersed air bubble flow about a cylindrical conductor emitting a constant heat flux. The technique of Particle Image Velocimetry is utilized in order to obtain a full-field non-invasive measurement of the resulting bubbly flow velocity field. The employed approach utilizes a flow visualization technique in which the instantaneous velocity profile of a given flow field is determined by digitally recording particle or bubble images within the flow over multiple successive video frames and then conducting a completely computational analysis of the data. The use of particle tracking algorithms which perform a point-by-point matching of seed images from one frame to the next allows construction of particle or bubble pathlines and instantaneous velocity field. Results were initially obtained for a synthetically created flow field and a single phase liquid convective field seeded with flow-following tracer particles. The method was additionally extended to measurements within a gas/liquid system in which bubble rise velocities over a substantial two-dimensional flow area were determined in order to demonstrate the effectiveness of the developed digital data acquisition and analysis methodology.A version of this paper was presented at the 12th Symposium on Turbulence, University of Missouri-Rolla, 24–26 September, 1990  相似文献   

15.
 A new technique based on wavelet transform is applied to bidimensional velocity fields obtained by particle image velocimetry (PIV) measurements, in order to extract and characterize swirling motion associated with coherent structures. The proposed technique is based on the selectivity property of the wavelet transform and permits the detection of regions of the flow field associated with coherent structures and their spatial localization. Furthermore, being the method based on the analysis of the local energy content at separated scales, it is possible to extract the typical wavenumber associated with structures and therefore the typical length-scale. The procedure is validated by the application to velocity vector fields obtained from PIV measurements in different flow conditions and turbulence levels. Results are compared with those obtained by other more standard procedures, and the advantages and limitations of the proposed method are then discussed. Received: 16 October 2000 / Accepted: 18 June 2001 Published online: 29 November 2001  相似文献   

16.
In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry(PIV). Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.  相似文献   

17.
18.
 Particle Image Velocimetry (PIV) technique combined with flow visualization was applied in heterogeneous drag reduction to examine the motion of the polymer thread and the mixing process of polymer and water simultaneously at Reynolds numbers of 15000. The instantaneous velocity profiles for water/polymer motion showed in some cross-sections differences in the velocities of the two phases which indicates an interaction between the polymer thread and the water phase. The results of this interaction have not a significant effect on the drag reduction compared with the influence of the mixing process. Received: 31 October 1995/Accepted: 16 July 1996  相似文献   

19.
A method which combines standard two-dimensional particle image velocimetry (PIV) with a new image processing algorithm has been developed to measure the average local gas bubble velocities, as well as the local velocities of the liquid phase, within small stirred vessel reactors. The technique was applied to measurements in a gas–liquid high throughput experimentation (HTE) vessel of 45 mm diameter, but it is equally suited to measurements in larger scale reactors. For the measurement of liquid velocities, 3 μm latex seeding particles were used. For gas velocity measurements, a separate experiment was conducted which involved doping the liquid phase with fluorescent Rhodamine dye to allow the gas–liquid interfaces to be identified. The analysis of raw PIV images enabled the detection of bubbles within the laser plane, their differentiation from obscuring bubbles in front of the laser plane, and their use in lieu of tracer particles for gas velocity analysis using cross-correlation methods. The accuracy of the technique was verified by measuring the velocity of a bubble rising in a vertical glass column. The new method enabled detailed velocity fields of both phases to be obtained in an air–water system. The overall flow patterns obtained showed a good qualitative agreement with previous work in large scale vessels. The downward liquid velocities above the impeller were greatly reduced by the addition of the gas, and significant differences between the flow patterns of the two-phases were observed.  相似文献   

20.
Non-scanning volume flow measurement techniques such as 3D-PTV, holographic and tomographic particle image velocimetry (PIV) permit reconstructions of all three components (3C) of velocity and vorticity vectors in a fluid volume (3D). In this study, we present a novel 3D3C technique termed Multiple-Color-Plane Stereo Particle-Image-Velocimetry (color PIV), which allows instantaneous measurements of 3C velocity vectors in six parallel, colored light sheets. We generated the light sheets by passing white light of two strobes through dichroic color filters and imaged the slices by two 3CCD color cameras in Stereo-PIV configuration. The stereo-color images were processed by custom software routines that sorted each colored fluid particle into one of six gray-scale images according to its hue, saturation, and luminance. We used conventional Stereo PIV cross-correlation algorithms to compute a 3D planar vector field for each light sheet and subsequently interpolated a volume flow map from the six vector fields. As a first application, we quantified the wake and axial flow in the vortical structures of a robotic insect (fruit fly) model wing. In contrast to previous findings, the measured data indicate strong axial flow components on the upper wing surface, including axial flow in the leading-edge vortex core. Collectively, color PIV is robust against mechanical misalignments, avoids laser safety issues, and computes instantaneous 3D vector fields in a fraction of the time typical for other 3D systems. Color PIV might thus be of value for volume measurements of highly unsteady flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号