首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of silylated ferrocenoyl chalcogenide reagents, FcC(O)ESiMe(3) (E = S, Se, Te; Fc = ferrocene), can be prepared in very good yield from FcC(O)Cl and LiESiMe(3). These reagents are used in the preparation of triphenylphosphine-ligated copper and silver ferrocenoyl thiolate and selenolate complexes, [M(4)(E{O}CFc)(4)(PPh(3))(4)], (M = Cu, Ag; E = S, Se) and [Cu(2)(mu-Se{O}CFc)(2)(PPh(3))(3)] from solubilized copper(i) and silver(i) acetate. The structures of these complexes have been determined via single-crystal X-ray diffraction. The driving force for these reactions is the thermodynamically favorable formation and elimination of AcOSiMe(3). The synthesis and characterization of both starting reagents and cluster complexes are discussed.  相似文献   

2.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

3.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

4.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

5.
A series of alkaline earth metallocene complexes carrying the diphenylphosphanocyclopentadienyl ligand, [Ae(L)(x)(η(5)-C(5)H(4)PPh(2))(2)] (Ae = Ca, L = thf, x = 1 (6a); Ae = Ca, L = dme, x = 1 (6b); Ae = Sr, L = thf, x = 1 (7); Ae = Ba, L = thf, x = 1 (8a); Ae = Ba, L = dme, x = 2 (8b)), were prepared by redox transmetallation/protolysis from the free metals, diphenylmercury and diphenylphosphanocyclopentadiene. These complexes were characterised using multinuclear NMR spectroscopy and two by single crystal X-ray diffraction. [Ca(dme)(η(5)-C(5)H(4)PPh(2))(2)] (6b) is a discrete neutral monomeric eight coordinate molecule in which the phosphorus atoms are not coordinated to the calcium ion and the larger barium analogue, ten-coordinate [Ba(dme)(2)(η(5)-C(5)H(4)PPh(2))(2)] (8b), has an extremely bent sandwich structure due to the two dme ligands attached to the metal. Bimetallic complexes, [Ae(thf)(x)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].(solv) (Ae = Ca, L = thf, x = 2, solv = 1.5thf (9); Ae = Sr, L = thf, x = 3, solv = 1.5thf (10); Ae = Ba, L = thf, x = 3, solv = thf (11)) were obtained by reaction of the homometallic complexes with [Pt(cod)(Me)(2)]. The crystal structures of [Ca(thf)(2)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].1.5thf (9), [Sr(thf)(3)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].1.5thf (10) and [Ba(thf)(3)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].thf (11) show the eight (calcium) and nine coordinate (strontium and barium) fragments acting as a chelating metalloligand attached to the square planar platinum through the phosphorus donor atoms. The solution chemistry of these bimetallic complexes has been investigated by NMR spectroscopy, electro-spray ionisation mass spectrometry and conductivity experiments which indicate that the bimetallic compounds persist in solution.  相似文献   

6.
Reactions of 1,1'-bis(dipheny1phosphino)cobaltocene with Co(PMe(3))(4), Ni(PMe(3))(4), Fe(PMe(3))(4), Ni(COD)(2), FeMe(2)(PMe(3))(4) or NiMe(2)(PMe(3))(3) afford a series of novel dinuclear complexes [((Me(3)P)[lower bond 1 start]Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)M[upper bond 1 end](η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (M = Co(1), Ni(2) and Fe(3)) [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](COD)](4), [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](PMe(3))(2)] (5) and [((Me(3)P)[lower bond 1 start]Co(Me)(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)Fe[upper bond 1 end](Me)(η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (6). Reactions of 1,1'-bis(dipheny1phosphino)ferrocene with Ni(PMe(3))(4), NiMe(2)(PMe(3))(3), or Co(PMe(3))(4) gives rise to complexes [Fe(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)M[upper bond 1 end](PMe(3))(2)] (M = Ni (7), Co (8)). The complexes 1-8 were spectroscopically investigated and studied by X-ray single crystal diffraction. The possible reaction mechanisms and structural characteristics are discussed. Density functional theory (DFT) calculations strongly support the deductions.  相似文献   

7.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

8.
Three pendant benzamidines, [Ph-C(=NC(6)H(5))-{NH(E)}] [E = -(CH(2))(2)SMe (1); -(CH(2))(2)S(t)Bu (2); -o-C(6)H(4)SMe (3)], are described. Reactions of 1, 2 or 3 with one molar equivalent of Pd(OAc)(2) in CH(2)Cl(2) give the palladacyclic complexes, [Ph-C{-NH(η(1)-C(6)H(4))}{=N(E)}]Pd(OAc) [E = -(CH(2))(2)SMe (4); -(CH(2))(2)S(t)Bu (5); -o-C(6)H(4)SMe (6)], as mononuclear palladium complexes respectively. A minor product described as 5', {[Ph-C{-N(C(6)H(5))}{-N(CH(2))(2)S(t)Bu}]Pd(OAc)}(2), was isolated as benzamidinate-bridged dinuclear palladium complex upon recrystallizing from Et(2)O/hexane solution. Treatment of 1, 2 or 3 with one molar equivalent of PdCl(2) in the presence of NEt(3) in CH(2)Cl(2) gives the palladacyclic complexes, [Ph-C{-NH(η(1)-C(6)H(4))}{=N(E)}]PdCl [E = -(CH(2))(2)SMe (7); -(CH(2))(2)S(t)Bu (8); -o-C(6)H(4)SMe (9)], as mononuclear palladium complexes respectively. The crystal and molecular structures are reported for compounds 5, 5' and 6-8. The application of these palladacyclic complexes to the Suzuki and Heck coupling reactions was examined.  相似文献   

9.
New (chalcogenoethyl)ferrocenylcarboxalate functionalized silver chalcogenide nanoclusters were synthesized using a combination of silylated chalcogen reagents at low temperatures. The addition of E(SiMe(3))(2) to reaction mixtures of FcC{O}OCH(2)CH(2)ESiMe(3) (E = S, Se) and (Ph(3)P)(2)·AgOAc affords nanoclusters with approximate molecular formulas [Ag(36)S(9)(SCH(2)CH(2)O{O}CFc)(18)(PPh(3))(3)] (1), [Ag(100)Se(17)(SeCH(2)CH(2)O{O}CFc)(66)(PPh(3))(10)] (2), and [Ag(180)Se(54)(SeCH(2)CH(2)O{O}CFc)(72)(PPh(3))(14)] (3) as noncrystalline solids. Compositions were formulated on the basis of elemental analysis, high resolution transmission electron microscopy, and dynamic light scattering experiments. Solutions of these polyferrocenyl assemblies display a single quasi-reversible redox wave with some adsorption to the electrode surface as studied by cyclic voltammetry. With the smaller clusters 1, the addition of [Bu(4)N][HSO(4)] results in a shift of the reduction wave to less positive potentials than those of the complex in the absence of these oxoanions. No further shift is observed after the addition of approximately 1 equivalent of HSO(4)(-)/ferrocene branch. Cyclic voltammograms of the larger clusters 2 and 3 show the appearance of a new, irreversible wave at less positive potentials than the initial wave upon the addition of HSO(4)(-). The appearance of this new wave together with the disappearance of the reduction wave indicates a stronger interaction between the nanoclusters and the hydrogen sulfate anion.  相似文献   

10.
A series of tri- and bimetallic titanium-gold, titanium-palladium, and titanium-platinum derivatives of the general formulas [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)(AuCl)}(2)]·2THF [n = 0 (1); n = 2 (2); n = 3 (3)] and [TiCl(2){η(5)-C(5)H(4)κ-(CH(2))(n)PPh(2)}(2)(MCl(2))]·2THF [M = Pd, n = 0 (4); n = 2 (5); n = 3 (6) ; M = Pt, n = 0 (7); n = 2 (8); n = 3 (9)] have been synthesized and characterized by different spectroscopic techniques and mass spectrometry. The molecular structures of compounds 1-9 have been investigated by means of density functional theory calculations. The calculated IR spectra of the optimized structures fit well with the experimental IR data obtained for 1-9. The stability of the heterometallic compounds in deuterated solvents [CDCl(3), dimethyl sulfoxide (DMSO)-d(6), and mixtures 50:50 DMSO-d(6)/D(2)O and 1:99 DMSO-d(6)/D(2)O at acidic and neutral pH] has been evaluated by (31)P and (1)H NMR spectroscopy showing a higher stability for these compounds than for Cp(2)TiCl(2) or precursors [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)}(2)]. The new compounds display a lower acidity (1-2 units) than Cp(2)TiCl(2). The decomposition products have been identified over time. Complexes 1-9 have been tested as potential anticancer agents, and their cytotoxicity properties were evaluated in vitro against HeLa human cervical carcinoma and DU-145 human prostate cancer cells. TiAu(2) and TiPd compounds were highly cytotoxic for these two cell lines. The interactions of the compounds with calf thymus DNA have been evaluated by thermal denaturation (1-9) and by circular dichroism (1, 3, 4, and 7) spectroscopic methods. All of these complexes show a stronger interaction with DNA than that displayed by Cp(2)TiCl(2) at neutral pH. The data are consistent with electrostatic interactions with DNA for TiAu(2) compounds and for a covalent binding mode for TiM (M = Pd, Pt) complexes.  相似文献   

11.
New [CpM(Q)Cl] complexes (M = Rh or Ir, Cp = pentamethylcyclopentadienyl, HQ = 1-phenyl-3-methyl-4R(C=O)-pyrazol-5-one in general, in detail HQ(Me), R = CH(3); HQ(Et), R = CH(2)CH(3); HQ(Piv), R = CH(2)-C(CH(3))(3); HQ(Bn), R = CH(2)-(C(6)H(5)); HQ(S), R = CH-(C(6)H(5))(2)) have been synthesized from the reaction of [CpMCl(2)](2) with the sodium salt, NaQ, of the appropriate HQ proligand. Crystal structure determinations for a representative selection of these [CpM(Q)Cl] compounds show a pseudo-octahedral metal environment with the Q ligand bonded in the O,O'-chelating form. In each case, two enantiomers (S(M)) and (R(M)) arise, differing only in the metal chirality. The reaction of [CpRh(Q(Bn))Cl] with MgCH(3)Br produces only halide exchange with the formation of [CpRh(Q(Bn))Br]. The [CpRh(Q)Cl] complexes react with PPh(3) in dichloromethane yielding the adducts CpRh(Q)Cl/PPh(3) (1:1) which exist in solution in two different isomeric forms. The interaction of [CpRh(Q(Me))Cl] with AgNO(3) in MeCN allows generation of [CpRh(Q(Me))(MeCN)]NO(3).3H(2)O, whereas the reaction of [CpRh(Q(Me))Cl] with AgClO(4) in the same solvent yields both [CpRh(Q(Me))(H(2)O)]ClO(4) and [CpRh(Cl)(H(2)O)(2)]ClO(4); the H(2)O molecules derive from the not-rigorously anhydrous solvents or silver salts.  相似文献   

12.
A series of sulfido-bridged tungsten-ruthenium dinuclear complexes Cp*W(mu-S)(3)RuX(PPh(3))(2) (4a; X = Cl, 4b; X = H), Cp*W(O)(mu-S)(2)RuX(PPh(3))(2) (5a; X = Cl, 5b; X = H), and Cp*W(NPh)(mu-S)(2)RuX(PPh(3))(2) (6a; X = Cl, 6b; X = H) have been synthesized by the reactions of (PPh(4))[Cp*W(S)(3)] (1), (PPh(4))[Cp*W(O)(S)(2)] (2), and (PPh(4))[Cp*W(NPh)(S)(2)] (3), with RuClX(PPh(3))(3) (X = Cl, H). The heterolytic cleavage of H(2) was found to proceed at room temperature upon treating 5a and 6a with NaBAr(F)(4) (Ar(F) = 3, 5-C(6)H(3)(CF(3))(2)) under atmospheric pressure of H(2), which gave rise to [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (7a) and [Cp*W(NHPh)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (8), respectively. When Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b) was treated with a Br?nstead acid, [H(OEt(2))(2)](BAr(F)(4)) or HOTf, protonation occurred exclusively at the terminal oxide to give [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](X) (7a; X = BAr(F)(4), 7b; X = OTf), while the hydride remained intact. The analogous reaction of Cp+W(mu-S)(3)Ru(PPh(3))(2)H (4b) led to immediate evolution of H(2). Selective deprotonation of the hydroxyl group of 7a or 7b was induced by NEt(3) and 4b, generating Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b). Evolution of H(2) was also observed for the reactions of 7a or 7b with CH(3)CN to give [Cp*W(O)(mu-S)(2)Ru(CH(3)CN)(PPh(3))(2)](X) (11a; X = BAr(F)(4), 11b; X = OTf). We examined the H/D exchange reactions of 4b, 5b, and 7a with D(2) and CH(3)OD, and found that facile H/D scrambling over the W-OH and Ru-H sites occurred for 7a. Based on these experimental results, the mechanism of the heterolytic H(2) activation and the reverse H(2) evolution reactions are discussed.  相似文献   

13.
Cyclodiphosphazanes containing phosphine or phosphine plus amide functionalities {((t)BuNP(OC(6)H(4)PPh(2)-o)}(2) (3), {(t)BuNP(OCH(2)CH(2)PPh(2))}(2) (4), {(t)BuHN((t)BuNP)(2)OC(6)H(4)PPh(2)-o} (5), and {(t)BuHN((t)BuNP)(2)OCH(2)CH(2)PPh(2)} (6) were synthesized by reacting cis-{(t)BuNPCl}(2) (1) and cis-[(t)BuHN((t)BuNP)(2)Cl] (2) with corresponding phosphine substituted nucleophiles. The reactions of 3 and 5 with excess of elemental sulfur or selenium produce the corresponding tetra and trichalcogenides, {((t)BuNP(E)(OC(6)H(4)P(E)Ph(2)-o)}(2) (7, E = S; 8, E = Se) and {(t)BuHN((t)BuNP)(2)OC(6)H(4)P(E)Ph(2)-o} (9, E = S; 10, E = Se), respectively, in quantitative yields. The reactions between 3 and [Rh(COD)Cl](2) or [M(COD)Cl](2) (M = Pd or Pt) afford bischelated complexes [Rh(CO)Cl{(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (11), and [MCl(2){(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (12, M = Pd; 13, M = Pt) in good yield. The 1 : 2 reaction between 3 and [PdCl(η(3)-C(3)H(5))](2) in dichloromethane resulted initially in the formation of a tripalladium complex of the type [Pd(3)Cl(4)(η(3)-C(3)H(5))(2){(t)BuNPOC(6)H(4)PPh(2)}(2)] (14a) which readily reacts with moisture to form an interesting binuclear complex, [Cl(2)Pd{μ-(PPh(2)C(6)H(4)OP(μ-(t)BuN)(2)P(O)}(μ-Cl)Pd(OC(6)H(4)PPh(2))] (14b). One of the palladium(II) atoms forms a simple six-membered chelate ring, whereas the other palladium(II) atom facilitates the moisture assisted cleavage of one of the endocyclic P-O bonds followed by the oxidation of P(III) to P(V) thus forming a Pd-P σ-bond. The broken ortho-phosphine substituted phenoxide ion forms a five-membered palladacycle with the same palladium(II) atom. Similar reaction of 5 with [PdCl(η(3)-C(3)H(5))](2) also affords a binuclear complex [{PdCl(η(3)-C(3)H(5))}(t)BuNH{(t)BuNP}(2)OC(6)H(4)PPh(2){PdCl(2)}] (15) containing a PdCl(2) moiety which forms a six-membered chelate ring via ring-phosphorus and PPh(2) moieties on one side and a PdCl(η(3)-C(3)H(5)) fragment coordinating to amide bound phosphorus atom on the other side of the ring. Treatment of 3 with four equivalents of AuCl(SMe(2)) produces a tetranuclear complex, [(AuCl)(4){(t)BuNP(OC(6)H(4)PPh(2))}(2)] (16), whereas a 1 : 3 reaction between 5 and AuCl(SMe(2)) leads to the formation of a trinuclear complex, [(t)BuNH{(t)BuNP(AuCl)}(2)OC(6)H(4)P(AuCl)Ph(2)] (17). The crystal structures of 3, 5, 9-11 and 13-17 are reported.  相似文献   

14.
Tri-nuclear allyl-palladium complexes, [Pd(μ-SeCH(2)CH(2)COOR)(η(3)-C(3)H(4)R')](3) (R = H, Me, Et and R' = H, Me), have been synthesized by the reaction of [Pd(2)(μ-Cl)(2)(η(3)-C(3)H(4)R')(2)] with NaSeCH(2)CH(2)COOR. These complexes exist in a dynamic equilibrium with a dimeric form in solution and are fluxional at room temperature as shown by variable temperature (1)H NMR spectroscopy. The DFT calculations indicate that there is a negligible energy difference between the dimer and the trimer, and suggest that the delicate balance between the steric factors and angular strain decides the reaction products. These complexes (with R' = H) on treatment with [Pd(2)(μ-Cl)(2)(η(3)-C(3)H(5))(2)] afforded hetero-bridged complexes [Pd(2)(μ-Cl)(μ-SeCH(2)CH(2)COOR)(η(3)-C(3)H(5))(2)] (R = Me, Et). All the complexes have been characterized by NMR ((1)H, (13)C, (77)Se) spectroscopy. The molecular structure of [Pd(μ-SeCH(2)CH(2)COOEt)(η(3)-C(3)H(5))](3) revealed a chair conformation of the six-membered Pd(3)Se(3) ring, in which all the allyl groups lie at one side of the ring (similar to three axial 1,3,5-hydrogens of cyclohexane). Thermolysis of [Pd(μ-SeCH(2)CH(2)COOEt)(η(3)-C(3)H(5))](n) in diphenyl ether or hexadecylamine (HDA) yielded Pd(7)Se(4) as characterized by powder XRD.  相似文献   

15.
Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η(5)-C(5)H(5))(2)(THF)LuRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)Me(5))(2)(I)ThRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)H(5))(2)YRe(η(5)-C(5)H(5))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}URe(η(5)-C(5)H(5))(2)], [Y{Ga(NArCh)(2)}{C(PPh(2)NSiH(3))(2)}(CH(3)OCH(3))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}U{Ga(NArCH)(2)}(THF)], [(η(5)-C(5)H(5))(3)UGa(η(5)-C(5)Me(5))], [Yb(η(5)-C(5)H(5)){Si(SiMe(3))(3)(THF)(2)}], [(η(5)-C(5)H(5))(3)U(SnPh(3))], [(η(5)-C(5)H(5))(3)U(SiPh(3))], and (Ph[Me]N)(3)USi(SiMe(3))(3). Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide-metal (or metal-metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metal fragment to the other, while the bonding itself is always dominated by ionic character.  相似文献   

16.
para-Nitrobenzaldehyde semicarbazone (O(2)N(para)-C(6)H(4)C(H)=N-NH-CO-NH(2)) undergoes unprecedented chemical transformation during its reaction with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] in different alcoholic (R'OH, R' = CH(2)CH(2)OCH(3), CH(2)CH(3), CH(2)CH(2)CH(3), and CH(2)CH(2)CH(2)CH(3)) solvents whereby the NH(2) group of the semicarbazone ligand is displaced by a OR' group provided by the solvents. The transformed semicarbazone ligand binds to osmium as a bidentate N,O-donor forming five-membered chelate ring to afford complexes of type [Os(PPh(3))(2)(CO)(H)(L-OR')], where L-OR' refers to the transformed semicarbazone ligand. Structure of the [Os(PPh(3))(2)(CO)(H)(L-OCH(2)CH(2)OCH(3))] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(H)(L-OR')] complexes are diamagnetic and show characteristic (1)H NMR signals. They also show intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on the complexes shows an irreversible oxidative response within 0.69-0.88 V versus SCE.  相似文献   

17.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

18.
A series of rare-earth-metal-hydrocarbyl complexes bearing N-type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH(2)SiMe(3))(3)(thf)(2)] with equimolar amount of the electron-donating aminophenyl-Cp ligand C(5)Me(4)H-C(6)H(4)-o-NMe(2) afforded the corresponding binuclear monoalkyl complex [({C(5)Me(4)-C(6)H(4)-o-NMe(μ-CH(2))}Y{CH(2)SiMe(3)})(2)] (1a) via alkyl abstraction and C-H activation of the NMe(2) group. The lutetium bis(allyl) complex [(C(5)Me(4)-C(6)H(4)-o-NMe(2))Lu(η(3)-C(3)H(5))(2)] (2b), which contained an electron-donating aminophenyl-Cp ligand, was isolated from the sequential metathesis reactions of LuCl(3) with (C(5)Me(4)-C(6)H(4)-o-NMe(2))Li (1 equiv) and C(3)H(5)MgCl (2 equiv). Following a similar procedure, the yttrium- and scandium-bis(allyl) complexes, [(C(5)Me(4)-C(5)H(4)N)Ln(η(3)-C(3)H(5))(2)] (Ln=Y (3a), Sc (3b)), which also contained electron-withdrawing pyridyl-Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl-Flu ligand (C(13)H(9)-C(5)H(4)N) by [Ln(CH(2)SiMe(3))(3)(thf)(2)] generated the rare-earth-metal-dialkyl complexes, [(η(3)-C(13)H(8)-C(5)H(4)N)Ln(CH(2)SiMe(3))(2)(thf)] (Ln=Y (4a), Sc (4b), Lu (4c)), in which an unusual asymmetric η(3)-allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium-trisalkyl complex [Y(CH(2)C(6)H(4)-o-NMe(2))(3)], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η(3)-C(13)H(8)-C(5)H(4)N)Y(CH(2)C(6)H(4)-o-NMe(2))(2)] (5). Complexes 1-5 were fully characterized by (1)H and (13)C NMR and X-ray spectroscopy, and by elemental analysis. In the presence of both [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3), the electron-donating aminophenyl-Cp-based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph(3)C][B(C(6)F(5))(4)] only, the electron-withdrawing pyridyl-Cp-based complexes 3, in particular scandium complex 3b, exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99%) polystyrene, whereas their bulky pyridyl-Flu analogues (4 and 5) in combination with [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3) displayed much-lower activity to afford syndiotactic-enriched polystyrene.  相似文献   

19.
An unprecedented series of titanocene-gold bi- and trimetallic complexes of the general formula [[(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)(CH(2))(n)PPh(2))TiCl(2)](m)AuCl(x)](q+) (n = 0, 2, or 4; m = 1, x = 1, q = 0 or m = 2, x = 0, q = 1) have been prepared and characterized spectroscopically. The luminescence spectroscopy and photophysics of one of the compounds, [[(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)PPh(2))TiCl(2)](2)Au]PF(6), have been investigated in 2MeTHF solution and in the solid state at 77 and 298 K. Evidence for interfragment interactions based on the comparison of electronic band positions and emission lifetimes, namely, triplet energy transfer (ET) from the Au- to the Ti-containing chromophores, is provided. The cytotoxicity of the complexes was evaluated on A2780 ovarian cancer cells and on their cisplatin-resistant cell line A2780cisR; the compounds showed activity in the low micromolar range that was markedly more active than the corresponding titanocene-phosphine precursors [(η(5)-C(5)H(5))(η(5)-C(5)H(4)(CH(2))(n)PPh(2))TiCl(2)], cisplatin, and, for some of them, the gold analogue [(PPh(3))AuCl]. In an attempt to draw preliminary structure-activity relationships, cell uptake measurements and interaction studies with plasmid DNA and the model protein ubiquitin (Ub) have been undertaken on some of the compounds.  相似文献   

20.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号