首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
The changes in plasma membrane polarity of polymorphonuclear leukocytes (PMN) during the activation of the respiratory burst were investigated by measuring the steady-state fluorescence emission spectra of 2-dimethylamino(6-lauroyl) naphthalene (Laurdan), which is known to be incorporated at the hydrophobic-hydro-philic interface of the bilayer, displaying spectral sensitivity to the polarity of its surroundings. Laurdan shows a marked steady-state emission blue shift in nonpolar solvents, with respect to polar solvents. Our results show a blue shift of the fluorescence emission spectra of Laurdan during activation of PMN with phorbol myristate acetate or AT-formyl-methionyl-leucyl-phenylalanine. These results suggest that the activation of the respiratory burst of PMN is accompanied by a decrease in polarity in the hydrophobic-hydrophilic interface of the plasma membrane.  相似文献   

12.
The phototoxic anti-cancer drug flutamide is photolabile under UV-B light in either aerobic or anaerobic conditions. Irradiation of a methanol solution of this drug produces several photoproducts, one by photoreduction of the nitro group, one by rupture of the aromatic-NO2 bond of the parent compound, two as a result of the rupture of the CO-NH bond and one derived from the photoreduction product by scission of the aromatic-NH2 bond. Flutamide shows a photohemolytic effect on human erythrocytes and photoinduces lipid peroxidation. Studies on peripheral blood polymorphonuclear cells (neutrophils) demonstrated the phototoxicity of flutamide as well as inhibition of the cytotoxicity respiratory burst by the photoproduct derived from its photoreduction. The results suggest that the inhibition of the respiratory burst observed in phorbol myristate acetate (PMA)-activated cells is mediated by photosensitization and concomitant singlet oxygen production and/or formation of toxic photoproducts.  相似文献   

13.
Hybridization with lymphosarcoma cells immortalized mouse macrophages for the study of phagocytosis and cytobicidal properties. In the study of macrophage physiology, it became necessary to know more of their cellular metabolism and the changes which occurred when the cells were triggered into the respiratory burst. It was found that, in common with many other types of growing cell, activated 2C11-12 macrophage hybridomas produced considerable lactate under fully aerobic conditions, judging from the highly exothermic CR ratio and subsequent spectrophotometric analysis. Most of both the substrates (glucose and glutamine) was converted to lactate, respectively, by glycolysis and glutaminolysis, in the demand for biosythetic precursors during growth. Glucose was the more important energy source. Approximately 60% of heat production was explained in terms of enthalpy changes in glucose and glutamine metabolism. It was suspected that fatty acid oxidation from contaminants in the bovine serum albumin needed for cell culture may be important in catabolism.

The respiratory burst was triggered by phorbol-12-myristate-13-acetate and recorded by greatly (5-fold) increased heat production and enhanced chemiluminescence. Oxygen consumption was very rapid and soon led to anoxia in the closed culture system. The calorimetric-respirometric (CR) ratio was less negative and analysis confirmed that there was less lactate production. Radioisotope studies indicated that glycolysis and glutaminolysis were less intensive, with respiration of glucose accounting for over 90% of the heat production. The imperative for producing NADPH and cytotoxic oxygen metabolites heavily biased catabolism, reducing the supply of biosynthetic precursors. Known sources of heat production accounted for 87% enthalpy recovery and the remainder may well be caused by fatty acid oxidation.  相似文献   


14.
冯清  李世新 《分析化学》2000,28(11):1395-1397
用多形核白细胞-鲁米诺化学发光法测定具有超氧化物歧化酶(SOD)和过氧化氢酶(CAT)双功能模拟酶-金属卟啉(四磺酸基苯基铁卟啉、四磺酸基苯基铜卟啉、四磺酸基苯基锰卟啉、四磺酸基苯基钴卟啉)对呼吸爆发所产生的活性氧的影响,结果表明,模拟酶对爆发反应中细胞发光产生抑制,即对活性氧有清除作用;且同一物质随着浓度由10^-7-10^-5mol/L,上升而增强。  相似文献   

15.
Lipid peroxidation of erythrocyte membrane was caused by phorbol myristate acetate (PMA)-stimulated polymorphonuclear leukocytes (PMN) in the presence of ferritin. PMN themselves were not peroxidized. A lag period was observed before the start of the peroxidation reaction. In contrast, ferritin iron was continuously released by PMA-stimulated PMN, suggesting that accumulation of free iron in the reaction system was important for proceeding of the peroxidation reaction. Superoxide dismutase, catalase, hydroxyl radical scavengers and an iron chelator, diethylenetriaminepenta-acetic acid, inhibited the lipid peroxidation, indicating that the lipid peroxidation is initiated by a hydroxyl radical generated from the interaction of H2O2 with ferrous iron released from ferritin.  相似文献   

16.
This study examined the hypothesis that mycobacterial antigens generate different metabolic responses in macrophages as compared to gram‐negative effectors and macrophage activators. To this end, we utilized platinum electrodes and a light addressable potentiometric sensor to observe dynamic electrochemical changes in metabolic flux, as well as extracellular acidification. While phorbol myristate acetate (PMA) is commonly used to study macrophage activation, the concentration used to create this physiological response varies. The response of RAW‐264.7 macrophages is concentration‐dependent, where the metabolic response to high concentrations of PMA decreases suggesting deactivation. The gram‐negative effector, lipopolysaccharide (LPS), was seen to promote oxygen production which was used to produce a delayed onset of oxidative burst. Pre‐incubation with interferon‐γ (IFN‐γ) allowed a synergistic effect between IFN‐γ and LPS, allowing immediate initiation of oxidative burst. These studies exhibited a stark contrast with lipoarabinomannan (LAM), an antigenic glycolipid component associated with the bacterial genus Mycobacterium. The presence of LAM effectively inhibits any metabolic response preventing consumption of glucose and oxygen for the promotion of oxidative burst and to ensure pathogenic proliferation. This study demonstrates for the first time the immediate inhibitory metabolic effects LAM has on macrophages, suggesting implications for future intervention studies with Mycobacterium tuberculosis.  相似文献   

17.
The binding of a cationic surfactant, dodecylpyridinium (C12Py) chloride, with a low-charge-density poly (methacrylic acid) (PMA) was investigated in buffer solutions under the condition of constant pH. The binding isotherms with PMA consisted of two and three steps at a pH lower and higher than 3.2, respectively. Bindings in the first step were independent of pH and this step was considered to correspond to the solubilization of the hydrocarbon chains of C12Py into the nonpolar region of the compact form of PMA. This is the indication of the compact form from the binding isotherm. At pH higher than 3.2, the second step was discriminated and it depended on the pH. In the third step, a sharp rise in the degree of binding (β) was observed accompanying the solubilization of the precipitates of the PMA–C12Py complex. The binding with poly(acrylic acid) (PAA) and PMA in conventional unbuffered NaCl solutions was also examined and the pH profile of the solution during the binding process was determined. In the case of unbuffered NaCl solutions, the binding with PAA took place cooperatively at the critical association concentration (cac). The binding isotherm consisted of two steps and the pH decreased with the increase in β. The binding isotherm of PMA, on the other hand, consisted of three steps: the pH decreased slightly in the first step and considerably in the second step with the increase in β but it increased with β in the third step, exhibiting a pH minimum around 3.2. The binding in the first step coincided with that obtained in the buffered solutions. Linear relationships between β and the pH were found for both polymers. In the case of PMA, no cac was observed in both buffered and unbuffered NaCl solutions. Received: 24 January 2001 Accepted: 23 May 2001  相似文献   

18.
Bacterial-derived formylated peptide, (FMLP) stimulates the respiratory burst activity of human neutrophils via phospholipase C (PLC) activation followed by increased production of second messengers, IP3 and DG(1). One synthetic bisphosphonate, clodronate was tested to see how it might affect Ca2+-mediated activation of the neutrophil respiratory burst. Clodronate itself did not significantly change the respiratory burst, measured by Luminol-dependent chemiluminescence (CL). However, clodronate inhibited the FMLP-mediated stimulation of CL significantly (p<0.001). A selective inhibitor of PLC, quinacrine, alone inhibited CL significantly (p<0.0001) but with clodronate the inhibition was potentiated. The sensitivity to EGTA-treatment with clodronate indicated that clodronate is a Ca2+ mobilizing agent. Furthermore, clodronate-mediated CL was sensitive (p<0.001) to inhibitors of protein kinase C or tyrosine kinase and potentiated with vanadate treatment. Data suggests possible involvement of bisphosphonate in regulating phospholipase C activity in human neutrophils, probably via Ca2+-mediated phosphorylation of the subunit of PLC.  相似文献   

19.
Polyethylene terephthalate (PET) bottles, which are usually produced by injection stretch blow moulding (ISBM) are widely used for carbonated soft drinks (CSD) storage and transportation. Stretch rod movement, blow pressure, preform temperature profile, mould surface temperature and material properties are among the most important factors affecting the final product's quality in terms of the thickness distribution, burst pressure and top-load resistance of the bottles. However, the residence time of the blown bottle inside the mould is also an important factor affecting its final properties. Especially in PET bottle production for hot fillings, the residence time is a very important factor because the longer the residence time the better the crystalline structure of the PET. In this production, the lid section is desired to have a fully crystalline form so that it can withstand hot fluids. In this study, the aim was to optimise the mould surface temperature and the blown bottle's residence time inside the mould for 1 L soft drink PET bottle production based on the final properties using the ECHIP 7 design of experiment (DOE) program. The method employed through this program was a quadratic one. Optimum process parameters were determined by the response surface method (RSM) and the process settings ensuring maximum top-load, burst pressure, Tg and degree of crystallinity were regarded to be optimum. It was found that the optimum mould surface temperature and blown bottle residence time inside the mould were 10 °C and 20 s, respectively.  相似文献   

20.
The binding properties of trivalent metal ions to polyelectrolytes were investigated through the use of terbium [Tb(III)] in fluorescence studies. The fluorescence intensity and lifetimes of the lanthanide ions are directly dependent upon the number of water molecules bound to their inner coordination sphere. The more efficiently a ligand coordinates to a lanthanide ion, the more water molecules are expelled and consequently, the greater the fluorescence intensity and lifetime. This effect was used to probe for differences in the complexation behavior of tactic polymers. Aqueous solutions of isotactic and syndiotactic poly(methacrylic acid) (PMA) were neutralized and complexed with Tb(III) ions. The fluorescence intensity of the 286 nm hypersensitive excitation band was monitored and the lifetimes were measured using several excitation wavelengths. It was found that the isotactic PMA/Tb(III) complex exhibited a six times greater fluorescence intensity than the syndiotactic PMA complex. Lifetime measurements gave the number of water molecules coordinated by Tb(III) in the isotactic complex to be 2.4 while 3.4 waters remained bound to the Tb(III) ion in the syndiotactic PMA complex. These results indicate that isotactic PMA has the greater binding affinity towards Tb(III) ions. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号