首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of [RuCl2(PPh3)3] with 2 equiv. HimtMPh (HimtMPh?=?1-(4-methyl-phenyl)-imidazole-2-thione) in the presence of MeONa afforded cis-[Ru(κ 2-S,N-imtMPh)2(PPh3)2] (1), while interaction of [RuCl2(PPh3)3] and 2 equiv. HimtMPh in tetrahydrofuran (THF) without base gave [RuCl2(κ 1-S-HimtMPh)2(PPh3)2] (2). Treatment of [RuHCl(CO)(PPh3)3] with 1 equiv. HimtMPh in THF gave [RuHCl(κ 1-S-HimtMPh)(CO)(PPh3)2] (3), whereas reaction of [RuHCl(CO)(PPh3)3] with 1 equiv. of the deprotonated [imtMPh]? or [imtNPh]? (imtNPh?=?1-(4-nitro-phenyl)-2-mercaptoimidazolyl) gave [RuH(κ 2-S,N-imtRPh)(CO)(PPh3)2] (R?=?M 4a, R?=?N 4b). The ruthenium hydride complexes 4a and 4b easily convert to their corresponding ruthenium chloride complexes [RuCl(κ 2-S,N-imtMPh)(CO)(PPh3)2] (5a) and [RuCl(κ 2-S,N-imtNPh)(CO)(PPh3)2] (5b), respectively, in refluxing CHCl3 by chloride substitution of the RuH. Photolysis of 5a in CHCl3 at room temperature afforded an oxidized product [RuCl2(κ 2-S,N-imtMPh)(PPh3)2] (6). Reaction of 6 with excess [imtMPh]? afforded 1. The molecular structures of 1·EtOH, 3·C6H14, 4b·0.25CH3COCH3, and 6·2CH2Cl2 have been determined by single-crystal X-ray crystallography.  相似文献   

2.
[Ru(CO)(PPh3)23-O,N3,S-TSC1)] (1), [Ru(Cl)(CO)(PPh3)22-N3,S-TSC2)] (2), and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC3)] (3) have been prepared by reacting [Ru(H)(Cl)(CO)(PPh3)3] with the respective thiosemicarbazones TSC1 (2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone), TSC2 (3-hydroxybenzaldehyde thiosemicarbazone), and TSC3 (3,4-dihydroxybenzaldehyde thiosemicarbazone) in a 1?:?1 M ratio in toluene and all of the complexes have been characterized by UV–vis, FT-IR, and 1H and 31P NMR spectroscopy. The spectroscopic studies showed that TSC1 is coordinated to the central metal as a tridendate ligand coordinating via the azomethine nitrogen (C=N), phenolic oxygen, and sulfur to ruthenium in 1, whereas TSC2 and TSC3 are coordinated to ruthenium as a bidentate ligand through azomethine nitrogen (C=N) and sulfur in 2 and 3. Oxygen sensitivities of 1–3 and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC4)] (4), and antimicrobial activities of 1–3 have been determined.  相似文献   

3.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

4.
Four Ru(II) complexes with tridentate ligands viz. (4-hydroxy-N′-(pyridin-2-yl-ethylene) benzohydrazide [Ru(L1)(PPh3)2(Cl)] (1), N′-(pyridin-2-yl-methylene) nicotinohydrazide [Ru(L2)(PPh3)2(Cl)] (2), N′-(1H-imidazol-2-yl-methylene)-4-hydroxybenzohydrazide [Ru(L3)(PPh3)2(Cl)] (3), and N′-(1H-imidazol-2-yl-methylene) nicotinohydrazide [Ru(L4)(PPh3)2(Cl)] (4) have been synthesized and characterized. The methoxy-derivative of L3H (abbreviated as L3H*) exists in E configuration with torsional angle of 179.4° around C7-N8-N9-C10 linkage. Single crystal structures of acetonitrile coordinated ruthenium complexes of 1 and 3 having compositins as [Ru(L1)(PPh3)2(CH3CN)]Cl (1a) and [Ru(L3)(PPh3)2(CH3CN)]Cl (3a) revealed coordination of tridentate ligands with significantly distorted octahedral geometry constructed by imine nitrogen, heterocyclic nitrogen, and enolate amide oxygen, forming a cis-planar ring with trans-placement of two PPh3 groups and a coordinated acetonitrile. Ligands (L1H-L4H) and their ruthenium complexes (1–4) are characterized by 1H, 13C, 31P NMR, and IR spectral analysis. Ru(II) complexes have reversible to quasi-reversible redox behavior having Ru(II)/Ru(III) oxidation potentials in the range of 0.40–0.71 V. The DNA binding constants determined by absorption spectral titrations with Herring Sperm DNA (HS-DNA) reveal that L4H and 1 interact more strongly than other ligands and Ru(II) complexes. Complexes 1–3 exhibit DNA cleaving activity possibly due to strong electrostatic interactions while 4 displays intercalation.  相似文献   

5.
Reactions of the ruthenium complexes [Ru(κ3-tpy)(PPh3)Cl2], [Ru(κ3-tptz)(PPh3)Cl2] and [Ru(κ3-tpy)Cl3] [tpy = 2,2′:6′,2′′-terpyridine; tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine] with diphenyl-(2-pyridyl)-phosphine (PPh2Py) have been investigated. The complexes [Ru(κ3-tpy)(PPh3)Cl2] and [Ru(κ3-tptz)(PPh3)Cl2] reacted with PPh2Py to afford [Ru(κ3-tpy)(κ1-P-PPh2Py)2Cl]+ (1) and [Ru(κ3-tptz)(κ1-P-PPh2Py)2Cl]+ (2), which were isolated as their tetrafluoroborate salts. Under analogous conditions, [Ru(κ3-tpy)Cl3] gave a neutral complex [Ru(κ3-tpy)(κ1-PPh2Py)Cl2] (3). Upon treatment with an excess of NH4PF6 in methanol, 1 and 2 gave [Ru(κ3-tpy)(κ1-P-PPh2Py)(κ2-P,N-PPh2Py)](PF6)2 (4) and [Ru(κ3-tptz)(κ1-P-PPh2Py)(κ2-P,N-PPh2Py)](PF6)2 (5) containing both monodentate and chelated PPh2Py. Further, 4 and 5 reacted with an excess of NaCN and CH3CN to afford [Ru(κ3-tpy)(κ1-P-PPh2Py)2(CN)](PF6) (6), [Ru(κ3-tpy)(κ1-P-PPh2Py)2(NCCH3)](PF6)2 (7), [Ru(κ3-tptz)(κ1-P-PPh2Py)2(CN)]PF6 (8) and [Ru(κ3-tptz)(κ1-P-PPh2Py)2(NCCH3)](PF6)2 (9) supporting hemi labile nature of the coordinated PPh2Py. The complexes have been characterized by elemental analyses, spectral (IR, NMR, electronic absorption, FAB-MS), electrochemical studies and structures of 1, 2 and 3 determined by X-ray single crystal analyses. At higher concentration level (40 μM) the complexes under investigation exhibit inhibitory activity against DNA-Topo II of the filarial parasite S. cervi and 3 catalyses rearrangement of aldoximes to amide under aerobic conditions.  相似文献   

6.
Herein, we explore the coordination of di- and triimine chelators at ruthenium(II) and ruthenium(III) centers. The reactions of 2,6-bis-((4-tetrahydropyranimino)methyl)pyridine (thppy), N1,N2-bis((3-chromone)methylene)benzene-1,2-diamine (chb), and tris-((1H-pyrrol-2-ylmethylene)ethane)amine (H3pym) with trans-[RuIICl2(PPh3)3] afforded the diamagnetic ruthenium(II) complex cis-[RuCl2(thppy)(PPh3)] (1) and the paramagnetic complexes [mer-Ru2(μ-chb)Cl6(PPh3)2] (2), and [Ru(pym)] (3), respectively. The complexes were characterized by IR, NMR, and UV–vis spectroscopy and molar conductivity measurements. The structures were confirmed by single crystal X-ray diffraction studies. The redox properties of the metal complexes were probed via cyclic- and squarewave voltammetry. Finally, the radical scavenging capabilities of the metal complexes towards the NO and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radicals were investigated  相似文献   

7.

The complexes [MI2(CO)3(NCMe)2] (M=Mo or W) react in CH2Cl2 at room temperature with two equivalents of 4,4'-diphenylenecarbonitrile (dpc) to afford the new seven-coordinate complexes, [MI2(CO)3(4,4'-dpc-N)2] (1 and 2) in good yield. Equimolar quantities of [MI2(CO)3(NCMe)2] and PPh3 give [MI2(CO)3(NCMe)(PPh3)], which react in situ with 4,4'-dpc to yield the mono-4,4'-diphenylenecarbonitrile complexes, [MI2(CO)3(4,4'-dpc-N)(PPh3)] (3 and 4). Treatment of the bis(alkyne) complexes, [WI2(CO)(NCMe)(η 2-RC2R)2] (R=Me and Ph) with one equivalent of 4,4'-dpc in CH2Cl2 at room temperature affords the acetonitrile displaced products, [WI2(CO)(4,4'-dpc-N)(η 2-RC2R)2] (5 and 6). Reaction of equimolar quantities of [WI2(CO)(NCMe)(η 2-PhC2Ph)2] and 2 in CH2Cl2 at room temperature gives the 4,4'-dpc-bridged complex, [WI2(CO){WI2(CO)3(4,4'-dpc-N)(4,4'-dpc- N,N')}(η 2-PhC2Ph)2] (7) in good yield. Similarly, equimolar amounts of [WI2(CO)(NCMe)(η 2-RC2R)2] (R=Me and Ph) and (4) react in CH2Cl2 to afford the bimetallic complexes, [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(PPh3)}(η 2-RC2R)2] (8 and 9). The new bimetallic 4,4'-dpc-bridged alkyne complexes, [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-MeC2Me)2}(η 2-MeC2Me)2] [(10), [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-PhC2Ph)2}(η 2-PhC2Ph)2] (11) and [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-MeC2Me)2}(η 2-PhC2Ph)2] (12) are also described.  相似文献   

8.
Four NNN tridentate ligands L1–L4 containing 2‐methoxypyridylmethene or 2‐hydroxypyridylmethene fragment were synthesized and introduced to ruthenium centers. When (HOC5H3NCH2C5H3NC5H7N2) (L2) and (HOC5H3NCH2C5H3NC6H6N3) (L4) reacted with RuCl2(PPh3)3, two ruthenium chloride products Ru(L2)(PPh3)Cl2 ( 1 ) and Ru(L4)(PPh3)Cl2 ( 2 ) were isolated, respectively. Reactions of (MeOC5H3NCH2C5H3NC5H7N2) (L1) and (MeOC5H3NCH2C5H3NC6H6N3) (L3) with RuCl2(PPh3)3 in the presence of NH4PF6 generated two dicationic complexes [Ru(L1)2][PF6]2 ( 3 ) and [Ru(L3)2][PF6]2 ( 4 ), respectively. Complex 1 reacted with CO to afford product [Ru(L2)(PPh3)(CO)Cl][Cl]. The catalytic activity for transfer hydrogenation of ketones was investigated. Complex 1 showed the highest activity, with a turnover frequency value of 1.44 × 103 h?1 for acetophenone, while complexes 3 and 4 were not active.  相似文献   

9.
Complexes of pyrrole‐2‐carbaldehyde thiosemicarbazones, [(C4H4N4)(H)C2=N3–N2(H)–C1(=S)–N1HR; R = Ph, H2L1; Me, H2L2; H, H2L3] with nickel(II) and palladium(II) are described. The reaction of nickel(II) acetate with H2L1 in methanol in 1:1 molar ratio yielded a complex of composition, [Ni(κ2‐N3,S‐HL1)2] ( 1 ). Likewise reaction of NiCl2 with H2L2 in 1:1 molar ratio in acetonitrile in the presence of triethylamine base followed by the addition of pyridine did not yield the anticipated [Ni(κ3‐N4,N3,S‐L2)(py)] complex, moreover a bis‐square‐planar complex, [Ni(κ2‐N3,S‐HL2)2] ( 2 ) was formed. However, in the presence of bipyridine (bipy), it yielded the addition product, [Ni(κ2‐N3,S‐HL2)22‐N, N‐bipy)] ( 3 ). Reaction of PdCl22‐P, P–PPh2–CH2–PPh2) with H2L3 in toluene in the presence of triethylamine has yielded a complex of stoichiometry, [Pd(κ3‐N4,N3,S–L3)(κ1‐P–PPh2–CH2–P(O)Ph2] ( 4 ). The ligands (HL1) and (HL2) are chelating to NiII metal atom as anions binding through N3,S‐donor atoms with pendant pyrrole groups, and (L3)2– is chelating to the PdII metal atom as dianion through N4,N3,S‐donor atoms (pyrrole is N4‐bonded). Fourth site in 4 is bonded to one P‐donor atom of PPh2–CH2–P(O)Ph2, whose pendant –PPh2 group involves auto oxidation to –P(O)PPh2 during reaction. These complexes were characterized using analytical data, IR, NMR (1H, 31P) spectroscopy and X‐ray crystallography. Complexes 1 , 2 , and 4 have square‐planar arrangement, whereas complex 3 is octahedral.  相似文献   

10.
Summary The rhodium(I) carbonyl compounds [Rh(CO)L22] [BF4]. 1/2CH2Clnn2 (L = PPh2 or AsPh3) react with the nucleophiles OMe, RCOO (R = Me, Et) under nitrogen to form [Rh(OR)(CO)L2] (1)–(2) and [Rh(OOCR)(CO)L2] (7)–(10), respectively. Addition of [Rh(CO)2(PPh3)2]-[BF 4] to OMe under nitrogen produces [Rh(COOMe)-(CO) (PPh3)2]-MeOH (3), whilst reactions of [Rh(CO)-(PPh3)2] [BF4]·1/2CH2Cl2 and [Rh(CO)2(PPh3)2] [BF4] with OR- (R = Me, Et or n-Pr) in the presence of CO produce [Rh(COOR)(CO)2(PPh3)2] (4)–(6). The products have been characterised by i.r., 1H, 31P, 13Cn.m.r. spectroscopy and elemental analysis.  相似文献   

11.
N ,N ‐[(diethylamino)(thiocarbonyl)]‐substituted benzamidine ligands have been synthesized from the reaction of N ,N ‐[(diethylamino)(thiocarbonyl)]benzimidoyl chloride with functionalized amines such as 2‐aminophenol and 2‐picolylamine. The reaction of N ,N ‐[(diethylamino)(thiocarbonyl)]‐2‐hydroxyphenylbenzamidine ( H 2 L 1 ) with ruthenium(II) precursor [RuHCl(CO)(PPh3)3] afforded complex 1 of the type [Ru(L1)(CO)(PPh3)2] in which the ligand coordinated in tridentate ONS mode. The reaction of H 2 L 1 with copper precursor [Cu(CH3COO)(PPh3)2] induced C═N bond cleavage of the ligand and afforded complex 3 of the type [Cu(1,1‐DT)(Cl)(PPh3)2] (1,1‐DT = 1,1‐diethylthiourea) in which the ligand coordinated in a monodentate fashion. The ligand N ,N ‐[(diethylamino)(thiocarbonyl)]‐2‐picolylbenzamidine ( HL 2 ) reacted with ruthenium(II) and copper(I) precursors to form complex 2 of the type [Ru(1,1‐DT)(Cl2)(CO)(PPh3)2] and complex 3 , respectively, in which the ligand underwent C═N cleavage and coordinated in a monodentate fashion via C═S group. In complexes 1 and 2 , the two triphenylphosphine co‐ligands coordinated in trans position whereas, in complex 3 , the two triphenylphosphine co‐ligands coordinated in cis position. All the compounds were characterized using infrared, UV–visible, (1H, 13C, 31P) NMR, ESI‐MS and elemental analyses. The molecular structures of ligand H 2 L 1 and complexes 1 – 3 were determined using X‐ray crystallography, which confirmed the coordination mode of the ligands with metals. The crystal structure of complexes 1 and 2 revealed a distorted octahedral geometry around the ruthenium ion and the structure of complex 3 indicated a tetrahedral geometry around the copper ion. With the X‐ray structures, density functional theory computations were carried out to determine the electronic structure of the compounds. The interactions of complexes 1 – 3 with calf thymus DNA and bovine serum albumin protein were investigated using UV–visible and fluorescence spectroscopic and viscometric methods. Catecholase‐ and phosphatase‐like activities promoted by complexes 1 – 3 under physiological conditions have been studied. In vitro anticancer activities have been demonstrated by MTT assay, acridine orange/ethidium bromide and diamidino‐2‐phenylindole staining against various cancerous cell lines.  相似文献   

12.
Co-condensation of atoms of Re, Ru, Rh, Ir and Pt with oxalyl chloride gives metal chloro-carbonyl derivatives which may be used as precursors to the compounds [Re(CO)4Cl]2, [Ru(PMe3)3(CO)Cl2], α-[Ru(CO)3Cl(μ-Cl)]2, [Ru(PPh3)2(CO)2Cl2], [Rh(CO)2(μ-Cl)]2, [Rh(PPh3)2COCl], [Ir(PPh3)(CO)2Cl3] and cis-Pt(CO)2Cl2. Molybdenum atoms with oxalyl chloride give molybdenum-chloro derivatives.  相似文献   

13.
Two stable thiazolylazo anion radical complexes of ruthenium(II), [Ru(L1•−)(Cl)(CO)(PPh3)2] (1) and [Ru(L2•−)(Cl)(CO)(PPh3)2] (2) (where L1 = 2′-Thiazolylazo-2-imidazole and L2 = 4-(2′-Thiazolylazo)-1-n-hexadecyloxy-naphthalene), have been synthesized and characterized by spectroscopic and electrochemical techniques. The radical nature of the complexes has been confirmed from their room temperature magnetic moments and X-band ESR spectra. The radical complexes display a moderately intense (ε ~ 104 M−1 cm−1) and relatively broad band in 430–460 nm region. In the microcrystalline state, complexes (1) and (2) display strong ESR signals at g = 1.951 and g = 1.988, respectively. In CH2Cl2 solution, complexes (1) and (2) show a quasireversible one-electron response near −0.64 and −0.59 V, respectively, versus Ag/AgCl due to the radical redox couple [RuII(L)(Cl)(CO)(PPh3)2]/[RuII (L•−)(Cl)(CO)(PPh3)2].  相似文献   

14.
The reactions of 1 mol equiv. each of [Ru(PPh3)3Cl2] and N-(acetyl)-N′-(5-R-salicylidene)hydrazines (H2ahsR, R = H, OCH3, Cl, Br and NO2) in alcoholic media afford simultaneously two types of complexes having the general formulae [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl]. The complexes have been characterized by elemental analysis, magnetic, spectroscopic and electrochemical measurements. Molecular structures of [Ru(HahsH)(PPh3)2Cl2] and [Ru(ahsH)(PPh3)2Cl] have been confirmed by X-ray crystallography. In both species, the PPh3 ligands are trans to each other. The bidentate HahsH coordinates to the metal ion via the O atom of the deprotonated amide and the imine–N atom in [Ru(HahsH)(PPh3)2Cl2]. In HahsH, the phenolic OH is involved in a strong intramolecular hydrogen bond with the uncoordinated amide N atom forming a seven-membered ring. In [Ru(ahsH)(PPh3)2Cl], the tridentate ahsH2− binds to the metal ion via the deprotonated amide O, the imine N and the phenolate O atoms. In the electronic spectra, the green [Ru(HahsR)(PPh3)2Cl2] and brown [Ru(ahsR)(PPh3)2Cl] complexes display several absorptions in the ranges 385–283 and 457–269 nm, respectively. Both complexes are low-spin and display rhombic EPR spectra in frozen solutions. Both types of complexes are redox active and display a quasi-reversible ruthenium(III) to ruthenium(II) reduction which is sensitive to the polar effect of the substituent on the chelating ligand. The reduction potentials are in the ranges −0.21 to −0.12 and −0.42 to −0.21 V (versus Ag/AgCl) for [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl], respectively.  相似文献   

15.
The hydride carbonyl ruthenium(II) [RuH(CO)(pyzCOO)(PPh3)2] (1), [RuH(CO)(pyz-2,3-COO[CH3])(PPh3)2]·H2O (2) and dinuclear Ru(II)/Ru(III) [RuH(CO)(PPh3)(pyz-2,3-COO)Ru(CO)Cl2(PPh3)2] (3) complexes were synthesized and characterized by IR, 1H, 31P NMR, UV-Vis spectroscopy and X-ray crystallography. The experimental studies were complemented by quantum chemical calculations, which were used to identify the nature of the interactions between the ligands and the central ion, and the orbital composition in the frontier electronic structure. Based on a molecular orbital scheme, the calculated results allowed the interpretation of the UV-Vis spectra obtained at an experimental level. The luminescence property of the complex 2 was determined. The ac magnetic susceptibility measurements showed a residual magnetism evidenced by the small values of the molar susceptibility, not exceeding 0.5 emu/mol at 2 K, a lack of a Curie-Weiss region and weak magnetic interactions below 20 K.  相似文献   

16.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

17.
Reaction of α-amino acids (HL) with [Ru(PPh3)3Cl2] in the presence of a base afforded a family of complexes of type [Ru(PPh3)2(L)2]. These complexes are diamagnetic (low-spin d6, S=0) and show ligand-field transitions in the visible region. 1H and 31P NMR spectra of the complexes indicate the presence of C2 symmetry. Cyclic voltammetry on the [Ru(PPh3)2(L)2] complexes show a reversible ruthenium(II)–ruthenium(III) oxidation in the range 0.30–0.42 V vs. SCE. An irreversible ruthenium(III)–ruthenium(IV) oxidation is also displayed by two complexes near 1.5 V vs. SCE.  相似文献   

18.
The reaction of [RuCl2(PPh3)3] and closo-[B10H10]2? with p-IPhCOOH in CH2Cl2 solution affords two para-iodobenzoate exo-cyclized 11-vertex closo-ruthenaborane clusters [(PPh3)(p-IPhCO2)2RuB10H8] (1) and [(PPh3)2ClRu(PPh3)(p-IPhCO2)RuB10H9]?···?CH2Cl2 (2) that have been characterized by elemental analysis, FT-IR, 1H and 13C?NMR spectra and single-crystal X-ray diffraction analysis. Both clusters are based on a closo-type C 2 v 1?:?2?:?4?:?2?:?2 RuB10 stack with the metal occupying the unique six-connected apical position. In 1, the metal center has three exo-polyhedral ligands: one triphenylphosphine and two native oxygen atoms of para-iodobenzoates. The other oxygen atoms of two para-iodobenzoates are additionally bonded to B(2) and B(3) atoms respectively, resulting in two exo-cyclic five-membered Ru–O–C–O–B rings and engendering a symmetrical conformation. For 2, the metal center also has three exo-polyhedral ligands, one triphenylphosphine and one para-iodobenzoate to form one exo-cyclic five-membered Ru–O–C–O–B ring. There is an additional exo-polyhedral ruthenium atom bonding to the {RuB10} center via a {Ru–Ru} linkage and two {RuH μ B} bridges resulting in one closo distorted exo-polyhedral Ru(1)–Ru(2)–B(2)–B(4) tetrahedron.  相似文献   

19.
The reactivity of κ2-N,S-chelated ruthenium borate complexes, [Ru(PPh3)(κ2-N,S-(NC7H4S2)Ru{κ3-H,S,S′-H2B (NC7H4S2)2}] ( 1 a ) and [Ru(PPh3)(κ2-N,S-(NC5H4S){κ3-H,S,S′-H2B(NC5H4S)2}] ( 1 b ) with monoboranes have been explored. The prolonged room temperature reaction of [Ru(PPh3){κ2-N,S-(NC7H4S2)}{κ3-H,S,S′-H2B(NC7H4S2)2}], 1 a with an excess of [BH3 ⋅ THF] led to the formation of hydrogen-rich complex, arachno-[PPh3(κ2-B3H8)Ru{κ3-H,S,S′-H2B(NC7H4S2)2] ( 2 ). In a similar fashion, the isomeric ruthenatetraborane complexes of [Ru(PPh3)(κ2-N,S-(B3H8){κ3-H,S,S′-H2B(NC5H4S)2}], 4 and 5 were isolated from the room temperature reaction of 1 b with [BH3 ⋅ THF]. In complex 2 , the borate ligand, [H2B(NC5H4S)2] and the PPh3 occupy the endo and exo sites of the butterfly-shaped RuB3 core, respectively. In contrast, the borate unit [H2B(NC5H4S)2] in 4 sits on the exo position of the butterfly core, while the phosphine ligand occupies the endo site. Multinuclear spectroscopic analyses were done to characterize all new complexes and the structures were further confirmed by single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations were performed to probe into the bonding modes of these complexes.  相似文献   

20.
Polypyridyl ruthenium(II) dicarbonyl complexes with an N,O- and/or N,N-donor ligand, [Ru(pic)(CO)2Cl2] (1), [Ru(bpy)(pic)(CO)2]+ (2), [Ru(pic)2(CO)2] (3), and [Ru(bpy)2(CO)2]2+ (4) (pic=2-pyridylcarboxylato, bpy=2,2′-bipyridine) were prepared for comparison of the electron donor ability of these ligands to the ruthenium center. A carbonyl group of [Ru(L1)(L2)(CO)2]n (L1, L2=bpy, pic) successively reacted with one and two equivalents of OH to form [Ru(L1)(L2)(CO)(C(O)OH)]n−1 and [Ru(L1)(L2)(CO)(CO2)]n−2. These three complexes exist as equilbrium mixtures in aqueous solutions and the equilibrium constants were determined potentiometrically. Electrochemical reduction of 2 in CO2-saturated CH3CN–H2O at −1.5 V selectively produced CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号