首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究时间Caputo分数阶对流扩散方程的高效高阶数值方法.对于给定的时间分数阶偏微分方程,在时间和空间方向分别采用基于移位广义Jacobi函数为基底和移位Chebyshev多项式运算矩阵的谱配置法进行数值求解.这样得到的数值解可以很好地逼近一类在时间方向非光滑的方程解.最后利用一些数值例子来说明该数值方法的有效性和准确性.  相似文献   

2.
In this study, we employ Pascal polynomial basis in the two-dimensional Berger equation, which is a fourth order partial differential equation with applications to thin elastic plates. The polynomial approximation method based on Pascal polynomial basis can be readily adapted to obtain the numerical solutions of partial differential equations. However, a drawback with the polynomial basis is that the resulting coefficient matrix for the problem considered may be ill-conditioned. Due to this ill-conditioned behavior, we use a multiple-scale Pascal polynomial method for the Berger equation. The ill-conditioned numbers can be mitigated using this approach. Multiple scales are established automatically by selecting the collocation points in the multiple-scale Pascal polynomial method. This method is also a meshless method because there is no requirement to establish complex grids or for numerical integration. We present the solutions of six linear and nonlinear benchmark problems obtained with the proposed method on complexly shaped domains. The results obtained demonstrate the accuracy and effectiveness of the proposed method, as well showing its stability against large noise effects.  相似文献   

3.
An approximate method for solving higher‐order linear complex differential equations in elliptic domains is proposed. The approach is based on a Taylor collocation method, which consists of the matrix represantation of expressions in the differential equation and the collocation points defined in an elliptic domain. Illustrative examples are included to demonstrate the validity and applicability of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
Solving partial differential equations (PDE) with strong form collocation and nonlocal approximation functions such as orthogonal polynomials, trigonometric functions, and radial basis functions exhibits exponential convergence rates; however, it yields a full matrix and suffers from ill conditioning. In this work, we discuss a reproducing kernel collocation method, where the reproducing kernel (RK) shape functions with compact support are used as approximation functions. This approach offers algebraic convergence rate, but the method is stable like the finite element method. We provide mathematical results consisting of the optimal error estimation, upper bound of condition number, and the desirable relationship between the number of nodal points and the number of collocation points. We show that using RK shape function for collocation of strong form, the degree of polynomial basis functions has to be larger than one for convergence, which is different from the condition for weak formulation. Numerical results are also presented to validate the theoretical analysis. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 554–580, 2011  相似文献   

5.
Algorithmic aspects of a class of finite element collocation methods for the approximate numerical solution of elliptic partial differential equations are described Locall for each finite element the approximate solution is a polynomial. polynomials corresponding toadjacent finite elements need not match continuously but their values and noumal derivatives match at a discrete set of points on the common boundary.High order accuracy can be attained by increasing the number of mathching points and the number of colloction points for each finite element.Forlinear equations the collocation methods can be equivalently definde as generlized finite difference methods. The linear (or linearzed )equations that arise from the discretization lend themselves well to solution by the methods of the methods nested dissection.An implememtation is described and some numerical results are givevn.  相似文献   

6.
The use of the collocation method, with collocation points at the zeroes of a Chebyshev polynomial, to solve spatial problems of the stability of convective flows, is described. The fluid occupies a closed rectangular cavity on the boundaries of which conditions of the first, second and third kind can be specified. Using a differential matrix constructed at the collocation points, the spectral problem is transformed into an extended eigenvector problem that is solved numerically. The Rayleigh problem in a closed layer is solved for different values of the ratio of the sides of the rectangular cavity. The calculations presented are compared with the results of the solution of non-linear equations and also with the experimental and theoretical data of other authors.  相似文献   

7.
In this study, a Legendre collocation matrix method is presented to solve high-order Linear Fredholm integro-differential equations under the mixed conditions in terms of Legendre polynomials. The proposed method converts the equation and conditions to matrix equations, by means of collocation points on the interval [−1, 1], which corresponding to systems of linear algebraic equations with Legendre coefficients. Thus, by solving the matrix equation, Legendre coefficients and polynomial approach are obtained. Also examples that illustrate the pertinent features of the method are presented and by using the error analysis, the results are discussed.  相似文献   

8.
A novel collocation method based on Genocchi wavelet is presented for the numerical solution of fractional differential equations and time‐fractional partial differential equations with delay. In this work, to achieve the approximate solution with height accuracy, we employed the operational matrix of integer derivative and the pseudo‐operational matrix of fractional derivative in Caputo sense. Also, based on Genocchi function properties, we presented delay and pantograph operational matrices of Genocchi wavelet functions (GWFs). Due to operational and pseudo‐operational matrices, the equations under this study can be turned into nonlinear algebraic equations with the unknown GWF coefficients. For illustrating the upper bound of error for the proposed method, we estimate the error in the sense of Sobolev space. In addition, to demonstrate the efficacy of the pseudo‐operational matrix of fractional derivative, we investigate the upper bound of error for the mentioned matrix. Finally, the algorithm based on the proposed approach is implemented for some numerical experiments to confirm accuracy and applicability.  相似文献   

9.
梁蓓 《应用数学》2004,17(2):227-233
In this paper. Kansa′s method and Hermite collocation method with Radial Basis Func-tions is applied to solve partial differential equation. The resultant matrix generated from the Her-mite method is positive definite, which guarantees the reversibility of the matrix. The numerical re-sults indicate that the methods provides reversibility of the matrix. The numerical results indicatethat the method provieds an efficient algorithm for solving partial differential equations.  相似文献   

10.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

11.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

12.
In this article, a new numerical approach has been proposed for solving a class of delay time-fractional partial differential equations. The approximate solutions of these equations are considered as linear combinations of Müntz–Legendre polynomials with unknown coefficients. Operational matrix of fractional differentiation is provided to accelerate computations of the proposed method. Using Padé approximation and two-sided Laplace transformations, the mentioned delay fractional partial differential equations will be transformed to a sequence of fractional partial differential equations without delay. The localization process is based on the space-time collocation in some appropriate points to reduce the fractional partial differential equations into the associated system of algebraic equations which can be solved by some robust iterative solvers. Some numerical examples are also given to confirm the accuracy of the presented numerical scheme. Our results approved decisive preference of the Müntz–Legendre polynomials with respect to the Legendre polynomials.  相似文献   

13.
This article develops an efficient solver based on collocation points for solving numerically a system of linear Volterra integral equations (VIEs) with variable coefficients. By using the Euler polynomials and the collocation points, this method transforms the system of linear VIEs into the matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Euler coefficients. A small number of Euler polynomials is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving VIEs with variable coefficients.  相似文献   

14.
In this study, fractional differential equations having quintic nonlinearity are considered by proposing an accurate numerical method based on the matching polynomial and matrix‐collocation system. This method provides an integration between matrix and fractional derivative, which makes it fast and efficient. A hybrid computer program is designed by making use of the fast algorithmic structure of the method. An error analysis technique consisting of the fractional‐based residual function is constructed to scrutinize the precision of the method. Some error tests are also performed. Figures and tables present the consistency of the approximate solutions of highly stiff model problems. All results point out that the method is effective, simple, and eligible.  相似文献   

15.
In the first part of this paper we study the regularity properties of solutions of initial value problems of linear multi-term fractional differential equations. We then use these results in the convergence analysis of a polynomial spline collocation method for solving such problems numerically. Using an integral equation reformulation and special non-uniform grids, global convergence estimates are derived. From these estimates it follows that the method has a rapid convergence if we use suitable nonuniform grids and the nodes of the composite Gaussian quadrature formulas as collocation points. Theoretical results are verified by some numerical examples.  相似文献   

16.
The main concern of this paper is with the stable discretisation of linear partial differential equations of evolution with time-varying coefficients. We commence by demonstrating that an approximation of the first derivative by a skew-symmetric matrix is fundamental in ensuring stability for many differential equations of evolution. This motivates our detailed study of skew-symmetric differentiation matrices for univariate finite-difference methods. We prove that, in order to sustain a skew-symmetric differentiation matrix of order \(p\ge 2\), a grid must satisfy \(2p-3\) polynomial conditions. Moreover, once it satisfies these conditions, it supports a banded skew-symmetric differentiation matrix of this order and of the bandwidth \(2p-1\), which can be derived in a constructive manner. Some applications require not just skew-symmetry, but also that the growth in the elements of the differentiation matrix is at most linear in the number of unknowns. This is always true for our tridiagonal matrices of order 2 but need not be true otherwise, a subject which we explore further. Another subject which we examine is the existence and practical construction of grids that support skew-symmetric differentiation matrices of a given order. We resolve this issue completely for order-two methods. We conclude the paper with a list of open problems and their discussion.  相似文献   

17.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

18.
We present a pathfollowing strategy based on pseudo-arclength parametrization for the solution of parameter-dependent boundary value problems for ordinary differential equations. We formulate criteria which ensure the successful application of this method for the computation of solution branches with turning points for problems with an essential singularity. The advantages of our approach result from the possibility to use efficient mesh selection, and a favorable conditioning even for problems posed on a semi-infinite interval and subsequently transformed to an essentially singular problem. This is demonstrated by a Matlab implementation of the solution method based on an adaptive collocation scheme which is well suited to solve problems of practical relevance. As one example, we compute solution branches for the complex Ginzburg-Landau equation which start from non-monotone ‘multi-bump’ solutions of the nonlinear Schrödinger equation. Following the branches around turning points, real-valued solutions of the nonlinear Schrödinger equation can easily be computed.  相似文献   

19.
Renaut  Rosemary  Su  Yi 《Numerical Algorithms》1997,16(3-4):255-281
When the standard Chebyshev collocation method is used to solve a third order differential equation with one Neumann boundary condition and two Dirichlet boundary conditions, the resulting differentiation matrix has spurious positive eigenvalues and extreme eigenvalue already reaching O(N 5 for N = 64. Stable time-steps are therefore very small in this case. A matrix operator with better stability properties is obtained by using the modified Chebyshev collocation method, introduced by Kosloff and Tal Ezer [3]. By a correct choice of mapping and implementation of the Neumann boundary condition, the matrix operator has extreme eigenvalue less than O(N 4. The pseudospectral and modified pseudospectral methods are implemented for the solution of one-dimensional third-order partial differential equations and the accuracy of the solutions compared with those by finite difference techniques. The comparison verifies the stability analysis and the modified method allows larger time-steps. Moreover, to obtain the accuracy of the pseudospectral method the finite difference methods are substantially more expensive. Also, for the small N tested, N ⩽ 16, the modified pseudospectral method cannot compete with the standard approach. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A general formulation is constructed for Jacobi operational matrices of integration, product, and delay on an arbitrary interval. The main purpose of this study is to improve Jacobi operational matrices for solving delay or advanced integro–differential equations. Some theorems are established and utilized to reduce the computational costs. All algorithms can be used for both linear and nonlinear Fredholm and Volterra integro-differential equations with delay. An error estimator is introduced to approximate the absolute error when the exact solution of a given problem is not available. The error of the proposed method is less compared to other common methods such as the Taylor collocation, Chebyshev collocation, hybrid Euler–Taylor matrix, and Boubaker collocation methods. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号