首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Methods for the on-line chromatographic preconcentration of Cr(III) and Cr(VI) have been developed. Cr(VI) has been preconcentrated on an RP C18 silica based column with tetrabutylammonium-bromide (TBABr) as ion-pairing agent. Specially for Cr(III) a new and effective preconcentration technique based on the sorption of Cr(III)-ions in a C18 column in presence of KH-phthalate has been developed. The efficiency of sample introduction into the atomic emission spectrometer could be improved by hydraulic high pressure nebulization. For the detection of chromium the acetylene/N(2)O flame has been used as a powerful emission spectrometric source. Applying these steps the detection limit (3sigma) could be improved to 25 pg/mL for Cr(III) and to 20 pg/mL for Cr(VI). The method has been applied for the chromium speciation in natural water samples.  相似文献   

2.
A method for speciation of Cr(III) and Cr(VI) in real samples has been developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its pyrrolidinedithiocarbamate (APDC) complex by using a column containing Amberlite XAD–2000 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of pH, flow‐rate, adsorption and batch capacity and effect of various metal cations and salt anions on the sorption onto the resin were investigated. The adsorption is quantitative in the pH range of 1.5–2.5, and Cr(VI) ion was desorbed by using H2SO4 in acetone. The recovery of Cr(VI) was 97 ± 4 at a 95% confidence level. The highest preconcentration factor was 80 for a 200 mL sample volume. The adsorption and batch capacity of sorbent were 7.4 and 8.0 mg g?1 Cr(VI), respectively, and loading half time was 5.0 min. The detection limit of Cr(VI) is 0.6 μg/L. The procedure has been applied to the determination and speciation of chromium in stream water, tap water, mineral spring water and spring water. Also, the proposed method was applied to total chromium preconcentration in microwave digested moss and rock samples with satisfactory results. The developed method was validated with CRM‐TMDW‐500 (Certified Reference Material Trace Metals in Drinking Water) and BCR‐CRM 144R s (Certified Reference Material Sewage Sludge, Domestic Origin) and the results obtained were in good agreement with the certified values. The relative standard deviations were below 6%.  相似文献   

3.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

4.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

5.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer-scale TiO2 particles) was prepared by a sol-gel method and characterized by X-ray diffraction and scanning electron microscopy. The adsorptive behavior of Cr(III) and Cr(VI) on immobilized nanometer TiO2 was assessed. Cr(III) was selectively sorbed on immobilized nanometer TiO2 in the pH range of 7-9, while Cr(VI) was found to remain in solution. A sensitive and selective method has been developed for the speciation of chromium in water samples using an immobilized nanometer TiO2 microcolumn and inductively coupled plasma atomic emission spectrometry. Under optimized conditions (pH 7.0, flow rate 2.0 mL/min), Cr(III) was retained on the column, then eluted with 0.5 mol/L HNO3 and determined by ICP-AES. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by ascorbic acid. The adsorption capacity of immobilized nanometer TiO2 for Cr(III) was found to be 7.04 mg/g. The detection limit for Cr(III) was 0.22 ng/mL and the RSD was 3.5% (n = 11, c = 100 ng/ mL) with an enrichment factor of 50. The proposed method has been applied to the speciation of chromium in water samples with satisfactory results.  相似文献   

6.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

7.
Cloud point extraction (CPE) was applied as a preconcentration step for HPLC speciation of chromium in aqueous solutions. Simultaneous preconcentration of Cr(III) and Cr(VI) in aqueous solutions was achieved by CPE with diethyldithiocarbamate (DDTC) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the DDTC chelates of Cr(III) and Cr(VI) was realized on a RP-C18 column with the use of a mixture of methanol-water-acetonitrile (65:21:14, v/v) buffered with 0.05 M NaAc-HAc solution (pH 3.6) as the mobile phase at a flow rate of 1.0 ml min(-1). The precision (R.S.D.) for eight replicate injections of a mixture of 100 microg l(-1) of Cr(III) and Cr(VI) were 0.6 and 0.5% for the retention time, 4.1 and 4.6% for the peak area measurement, respectively. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for HPLC separation and in the initial solution, was 65 for Cr(III) and 19 for Cr(VI). The linear concentration range was from 50 to 1000 microg l(-1) for Cr(III) and 50-2000 microg l(-1) for Cr(VI). The detection limits of Cr(III) and Cr(VI) were 3.4 and 5.2 microg l(-1), respectively. The developed method was applied to the speciation of Cr(III) and Cr(VI) in snow water, river water, seawater and wastewater samples.  相似文献   

8.
A simple, rapid, and selective on-line method for the speciation and determination of Cr(III) and Cr(VI) in aqueous solutions by ion-pairing HPLC coupled with flame atomic absorption spectrometry (FAAS) is described. The composition of the mobile phase has been optimized for better separation. The effects of column temperature, volume of injection loop, fuel flow rate of FAAS, and nebulizer suction rate of FAAS have also been investigated. Separation is accomplished in almost 2.5 min on a 25 cm length C18 column at 40 degrees C. The selectivity of the method has been established by investigating the effect of interfering elements on chromium determination. The detection limit (3sigma) achieved by the method was calculated as 3.7 ng/mL for Cr(III) and 2.0 ng/mL for Cr(VI). The proposed method has been validated by analyzing certified reference material (BCR 544) and successfully applied to the analysis of drinking water and wastewater samples with a relative error below 6%.  相似文献   

9.
Summary The pyrolysed graphite L'vov platform of a tube furnace is considered as an electrode for the electrodeposition and speciation of chromium by electrothermal atomisation atomic absorption spectrometry (ETA-AAS). Firstly, a preliminary study of the Cr(VI)/Cr(III) voltammetric behavior at pH 4.70 on a glassy-carbon electrode is carried out. Secondly, the L'vov platform is used as a cathodic macro-electrode for the selective preconcentration of Cr(VI)/Cr(III) on a mercury film. Speciation of Cr(VI)/Cr(III) is carried out on the basis of the electrolysis potential (Ee): at pH 4.70 and Ee=–0.30 V, only Cr(VI) is reduced to Cr(III) and accumulated as Cr(OH)3 by adsorption on a mercury film; at Ee=–1.80 V both Cr(VI) and Cr(III) are accumulated forming an amalgam with added mercury(II) ions. Once the film has been formed, the platform is transferred to a graphite tube to atomise the element. The reliability of the method was tested for the speciation of chromium in natural waters and it proves to be highly sensitive thanks to the electroanalytical step. In all samples, the Cr(VI) concentration was less than the detection limit (0.15 ng ml–1), and the concentration of Cr(III) agrees with those of total chromium. The analytical recovery of Cr(VI) added to water samples [3.50 ng ml–1 of Cr(VI)] was 105±6.2%.  相似文献   

10.
A simple method has been proposed for the determination of chromium species by high-performance liquid chromatography (HPLC) after preconcentration by the ionic liquid, 1-butyl-3-methyimidazolium hexafluorophosphate ([C4MIM][PF6]). The simultaneous preconcentration of Cr(VI) and Cr(III) in wastewater was achieved with ammonium pyrrolidinedithiocarbamate (APDC) as the chelating agent and the ionic liquid [C4MIM][PF6] as the extractant. Baseline separation of the APDC chelates of Cr(III) and Cr(VI) was realised on a RP-C18 column using a mixture of methanol–acetonitrile–water (53:14:33, v/v) as the mobile phase at a flow rate of 1.0 mL min− 1. The influences of several variables on the complexation and extraction were evaluated: pH, reaction time, APDC concentration and metal ion interference. Our results showed that when the linear concentration of Cr(VI) and Cr(III) ranged from 25 to 200 μg L− 1, their linear correlation coefficients were between 0.9977 and 0.9978, their recoveries ranged from 91.8% to 95.8% and their relative standard deviations (n = 3) were between 0.31% and 1.8%. Common metal ions in water did not interfere with the determination. This method is a simple, fast, accurate, highly stable and selective method and has successfully been applied to the speciation of chromium in wastewater.  相似文献   

11.
A sensitive and simple method for determination of chromium species after separation and preconcentration by solid phase extraction (SPE) has been developed. For the determination of the total concentration of chromium in solution, Cr(VI) was efficiently reduced to Cr(III) by addition of hydroxylamine and Cr(III) was preconcentrated on a column of immobilised ferron on alumina. The adsorbed analyte was then eluted with 5?mL of hydrochloric acid and was determined by flame atomic absorption spectrometery. The speciation of chromium was affected by first passing the solution through an acidic alumina column which retained Cr(VI) and then Cr(III) was preconcentrated by immobilised ferron column and determined by FAAS. The concentration of Cr(VI) was determined from the difference of concentration of total chromium and Cr(III). The effect of pH, concentration of eluent, flow rate of sample and eluent solution, and foreign ions on the sorption of chromium (III) by immobilised ferron column was investigated. Under the optimised conditions the calibration curve was linear over the range of 2–400?µg?L?1 for 1000?mL preconcentration volume. The detection limit was 0.32?µg?L?1, the preconcentration factor was 400, and the relative standard deviation (%RSD) was 1.9% (at 10?µg?L?1; n?=?7). The method was successfully applied to the determination of chromium species in water samples and total chromium in standard alloys.  相似文献   

12.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

13.
A method for the preconcentration and speciation of chromium in seawater was developed. On-line preconcentration and determination were carried out by using inductively coupled plasma atomic emission spectrometry (ICP-AES) with dual mini-columns containing a chelating resin. In this system, Cr(III) was collected on the first column. The effluent containing residual chromium from the first column was collected on the second column after passing through a reduction-switching unit, in which the reducing agent was introduced, or not, for the reduction of Cr(VI) to Cr(lII). Cr(VI) was determined as the difference between the concentration of pre-reduced Cr(VI) and Cr(III) in the effluent from the first column. The detection limits for Cr(III) and Cr(VI) were 0.04 and 0.09 microg l(-1), respectively.  相似文献   

14.
15.
《Electroanalysis》2017,29(5):1222-1231
A microbial sensor, namely carbon paste electrode (CPE) modified with Citrobacter freundii (Cf–CPE) has been developed for the detection of hexavalent (Cr(VI)) and trivalent (Cr(III)) chromium present in aqueous samples using voltammetry, an electroanalytical technique. The biosensor developed, demonstrated about a twofold higher performance as compared to the bare CPE for the chosen ions. Using cyclic voltammetry and by employing the fabricated Cf–CPE, the lowest limit of detection (LLOD) of 1x10−4 M and 5x10−4 M for Cr(VI) and Cr(III) ions respectively could be achieved. By adopting the Differential Pulse Cathodic Stripping Voltammetric technique, the LLOD could be further improved to 1x10−9 M and 1x10−7 M for Cr(VI) and Cr(III) ions respectively using the biomodified electrodes. The reactions occurring at the electrode surface‐chromium solution interface and the mechanisms of biosorption of chromium species onto the biosensor are discussed. The stability and utility of the developed biosensor for the analysis of Cr(VI) and Cr(III) ions in chromite mine water samples has been evaluated.  相似文献   

16.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

17.
Ion interaction chromatography has been successfully used for the simultaneous determination of Cr(III) and Cr(VI) in waste water. A C-18 column which had been dynamically coated with octylamine was used for the separation of Cr(III) and Cr(VI) based on anionic interaction. Cr(III) was chelated with potassium hydrogen phthalate (KHP) before injecting into the column since the Cr(III) did not exist in an anionic form like the Cr(VI) (Cr2O72−) presented at the optimum condition. The analytes were detected at 200 nm and linear relationship between absorption with the concentration of Cr(III) or Cr(VI) was 0.1-50 mg/L. Most of the interested interferences including alkali metals, heavy metals and organic materials have no significant effect on Cr(III)-KHP complexation and Cr(VI) stability, only NH4+ and ascorbic acid yielded the serious effect on the Cr(VI) stability. The relative standard deviations calculated from both of peak area and retention time were 0.75-2.20%. The sensitivity of the method at the level concentration of sub mg/L enabled the simultaneous determination of Cr(III) and Cr(VI) contents in waste water samples without any special sample preparation step.  相似文献   

18.
A method for the separation and preconcentration of Cr(III) and Cr(VI) on activated carbon in presence of diethyldithiocarbamate as a complexing reagent was optimized. The method makes it possible to achieve 200- to 500-fold Cr(VI) concentrating depending on the initial volume of the solution to be analysed and the final volume eluted. The Cr(VI) concentration in the background solution determined with RSD 30% was equal to 1.5 g L. The limit of Cr(VI) determination was equal to 0.9 g L.  相似文献   

19.
 An isotope dilution mass spectrometric (IDMS) method, using the formation of positive thermal ions, was developed for Cr(III) and Cr(VI) speciation in aerosol particles. Cr(III) and Cr(VI) spike species, enriched in 53Cr, were applied for the isotope dilution step. After leaching of filter collected aerosol samples by an alkaline solution at pH 13, species separation was carried out by extraction with a liquid anion exchanger in methyl isobutyl ketone. Cr(VI) in the organic phase was re-extracted into an ammoniacal solution and chromium was then isolated from both fractions of species by electrodeposition. Detection limits of 30 pg/m3 for Cr(III) and of 8 pg/m3 for Cr(VI) were achieved in atmospheric aerosols for volumes of air samples of about 120 m3. These low detection limits allowed the determination of chromium species in continental aerosol particles in dependence on different seasons. The Cr(III) /Cr(VI) ratio was always found to be about 0.3 whereas dust from soil erosion, which is probably the primary source of chromium in the atmosphere, showed higher ratios. This indicates that chromium is oxidized in the atmosphere. The accuracy of the method was demonstrated in two interlaboratory comparisons of Cr(VI) determinations in welding dust samples. The IDMS method also contributed to the certification of a corresponding standard reference material organized by the Standard Reference Bureau of the European Union. Chromium speciation, including the determination of elemental chromium Cr(0), was carried out in aerosols of different welding processes for stainless steel. These analyses showed distinct differences in the distribution of chromium species in the welding process and can be used as an exact calibration method for routine methods in this important field of monitoring corresponding working places. Received: 19 August 1996/Revised: 24 September 1996/Accepted: 28 September 1996  相似文献   

20.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号