首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous comparisons between Reynolds‐averaged Navier–Stokes (RANS) and large‐eddy simulation (LES) modeling have already been performed for a large variety of turbulent flows in the context of fully deterministic flows, that is, with fixed flow and model parameters. More recently, RANS and LES have been separately assessed in conjunction with stochastic flow and/or model parameters. The present paper performs a comparison of the RANS k ? ε model and the LES dynamic Smagorinsky model for turbulent flow in a pipe geometry subject to uncertain inflow conditions. The influence of the experimental uncertainties on the computed flow is analyzed using a non‐intrusive polynomial chaos approach for two flow configurations (with or without swirl). Measured quantities including an estimation of the measurement error are then compared with the statistical representation (mean value and variance) of their RANS and LES numerical approximations in order to check whether experiment/simulation discrepancies can be explained within the uncertainty inherent to the studied configuration. The statistics of the RANS prediction are found in poor agreement with experimental results when the flow is characterized by a strong swirl, whereas the computationally more expensive LES prediction remains statistically well inside the measurement intervals for the key flow quantities.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Hybrid CFD/CAA methods have generally to be used for the numerical simulation of trailing-edge noise (see [9, 20] for instance). This study focuses on the first step of such hybrid methods, which is to predict the unsteady aerodynamic sources by the mean of a 3D unsteady simulation of the flow. Such a simulation is however generally still away from the numerical capabilities of ‘usual’ supercomputers. This paper investigates the use of a zonal LES method (based on the NLDE – Non-Linear Disturbance Equations – technique) for the numerical prediction of the aerodynamic noise sources. This method makes it possible to perform only zonal LES close to the main elements responsible of sound generation, while the overall configuration is only treated by a RANS approach. Attention will be paid to the specific boundary treatment at the interface between the RANS and LES regions. More precisely, the problem of the generation of turbulent inflow conditions for the LES region will be carefully addressed. The method is first assessed in the simulation of a flat plate ended by a blunted trailing-edge, and then applied to the simulation of the flow over a NACA0012 airfoil with blunted trailing-edge.  相似文献   

3.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents hybrid Reynolds-averaged Navier–Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid methods studied in this work include the detached eddy simulation (DES) based on Spalart–Allmaras (S–A), Menter’s k–ω shear-stress-transport (SST) and k–ω with weakly nonlinear eddy viscosity formulation (Wilcox–Durbin+, WD+) models and the zonal-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower–upper symmetric-Gauss–Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows. The project supported by the National Natural Science Foundation of China (10502030 and 90505005).  相似文献   

5.
Towards a Unified Turbulence Simulation Approach for Wall-Bounded Flows   总被引:1,自引:0,他引:1  
A hybrid Reynolds-averaged Navier–Stokes/Large-Eddy Simulation (RANS/LES) methodology has received considerable attention in recent years, especially in its application to wall-bounded flows at high-Reynolds numbers. In the conventional zonal hybrid approach, eddy-viscosity-type RANS and subgrid scale models are applied in the RANS and LES zones, respectively. In contrast, the non-zonal hybrid approach uses only a generalized turbulence model, which provides a unified simulation approach that spans the continuous spectrum of modeling/simulation schemes from RANS to LES. A particular realization of the non-zonal approach, known as partially resolved numerical simulation (PRNS), uses a generalized turbulence model obtained from a rescaling of a conventional RANS model through the introduction of a resolution control function F R , where F R is used to characterize the degree of modeling required to represent the unresolved scales of turbulent motion. A new generalized functional form for F R in PRNS is proposed in this study, and its performance is compared with unsteady RANS (URANS) and LES computations for attached and separated wall-bounded turbulent flows. It is demonstrated that PRNS behaves similarly to LES, but outperforms URANS in general.  相似文献   

6.
This paper investigates some important numerical aspects for the simulation of model rocket combustors. Precisely, (1) a new high‐order discretization technique (multi‐dimensional limiting process (MLP), low diffusion, and MLPld) is presented and compared with conventional second‐order schemes with different flux limiters. (2) Time accurate unsteady Reynolds‐averaged Navier–Stokes (RANS) simulations are performed to assess possible improvements in comparison with steady‐state RANS simulations. (3) Fully 3D simulations of an axisymmetric rocket combustor are compared with 2D axisymmetric ones. All studies are based on the Penn State preburner combustor experiment, which uses gaseous oxygen and hydrogen. This comprehensive study offers unique insight into how the mentioned numerical influence factors change the flow field, flame, and wall heat fluxes in the model rocket combustor. Because wall heat fluxes are known from the experiment only, numerical results are compared with LES of other authors, too. It will be shown that the high‐order spatial discretization significantly improves the agreement with measured wall heat fluxes at low additional computational cost. In general the transition from simple to more complex numerical approaches steadily improves the qualitative agreement between simulation and experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A strategy which blends a variational multiscale large eddy simulation (VMS-LES) model and a RANS model in a hybrid approach is investigated. A smooth blending function, which is based on the value of a blending parameter, is used for switching from VMS-LES to RANS. Different definitions of the blending parameter are investigated. The capabilities of the novel hybrid approach are appraised in the simulation of the flow around a circular cylinder at a Reynolds number 1.4×105, based on the freestream velocity and on the cylinder diameter, in the presence of turbulent boundary-layer due to turbulent inflow conditions. A second study at Reynolds numbers from Re=6.7×105 to 1.25×106 is also presented. The effect of using the VMS-LES approach in the hybrid model is evaluated. Results are compared to those of other RANS, LES and hybrid simulations in the literature and with experimental data  相似文献   

8.
The objective of this work is the comparison of three different DES-style hybrid RANS/LES implementations based on the Wilcox k– model. The three variants are designed to investigate alternative methods of substitution of the DES length scale within the background Reynolds Averaged Navier-Stokes (RANS) model. Basis for comparison is provided by both the idealised case of the decay of isotropic turbulence (DIT) as well as the practical case of the massively separated, turbulent flow around an airfoil at high angle of attack. The results of the investigations are discussed in detail, the outcome of which is an emphasis of the importance of DIT as a method for calibration, as well as of the relative freedom with which alternative DES-inspired approaches can be implemented for flows of practical relevance.  相似文献   

9.
The large eddy simulation(LES) approach implemented in the KIVA-3V code and based on one-equation sub-grid turbulent kinetic energy model are employed for numerical computation of diesel sprays in a constant volume vessel and in a Caterpillar 3400 series diesel engine.Computational results are compared with those obtained by an RANS(RNG k-ε) model as well as with experimental data.The sensitivity of the LES results to mesh resolution is also discussed.The results show that LES generally provides flow and spray characteristics in better agreement with experimental data than RANS;and that small-scale random vortical structures of the in-cylinder turbulent spray field can be captured by LES.Furthermore,the penetrations of fuel droplets and vapors calculated by LES are larger than the RANS result,and the sub-grid turbulent kinetic energy and sub-grid turbulent viscosity provided by the LES model are evidently less than those calculated by the RANS model.Finally,it is found that the initial swirl significantly affects the spray penetration and the distribution of fuel vapor within the combustion chamber.  相似文献   

10.
Xiao and Jenny (2012) proposed an interesting hybrid LES/RANS method in which they use two solvers and solve the RANS and LES equations in the entire computational domain. In the present work this method is simplified and used as a hybrid RANS-LES method, a wall-modeled LES. The two solvers are employed in the entire domain. Near the walls, the flow is governed by the steady RANS solver; drift terms are added to the DES equations to ensure that the time-averaged DES fields agree with the steady RANS field. Away from the walls, the flow is governed by the DES solver; in this region, the RANS field is set to the time-averaged LES field. The disadvantage of traditional DES models is that the RANS models in the near-wall region – which originally were developed and tuned for steady RANS – are used as URANS models where a large part of the turbulence is resolved. In the present method – where steady RANS is used in the near-wall region – the RANS turbulence models are used in a context for which they were developed. In standard DES methods, the near-wall accuracy can be degraded by the unsteady agitation coming from the LES region. It may in the present method be worth while to use an accurate, advanced RANS model. The EARSM model is used in the steady RANS solver. The new method is called NZ S-DES . It is found to substantially improve the predicting capability of the standard DES. A great advantage of the new model is that it is insensitive to the location of the RANS-LES interface.  相似文献   

11.
We present a novel approach to hybrid Reynolds-averaged Navier-Stokes (RANS)/ large eddy simulation (LES) wall modeling based on function enrichment, which overcomes the common problem of the RANS-LES transition and enables coarse meshes near the boundary. While the concept of function enrichment as an efficient discretization technique for turbulent boundary layers has been proposed in an earlier article by Krank & Wall (A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94-116), the contribution of this work is a rigorous derivation of a new multiscale turbulence modeling approach and a corresponding discontinuous Galerkin discretization scheme. In the near-wall area, the Navier-Stokes equations are explicitly solved for an LES and a RANS component in one single equation. This is done by providing the Galerkin method with an independent set of shape functions for each of these two methods; the standard high-order polynomial basis resolves turbulent eddies, where the mesh is sufficiently fine and the enrichment automatically computes the ensemble-averaged flow if the LES mesh is too coarse. As a result of the derivation, the RANS model is applied solely to the RANS degrees of freedom, which effectively prevents the typical issue of a log-layer mismatch in attached boundary layers. As the full Navier-Stokes equations are solved in the boundary layer, spatial refinement gradually yields wall-resolved LES with exact boundary conditions. Numerical tests show the outstanding characteristics of the wall model regarding grid independence, superiority compared to equilibrium wall models in separated flows, and achieve a speed-up by two orders of magnitude compared to wall-resolved LES.  相似文献   

12.
Germano (Theor Comput Fluid Dyn 17:225–331, 2004) proposed a hybrid-filter approach, which additively combines an LES-like filter operator (F) and a RANS-like statistical operator (E) using a blending function k: H?=?kF?+?(1???k)E. Using turbulent channel flow as an example, we first conducted a priori tests in order to gain some insights into this hybrid-filter approach, and then performed full simulations to further assess the approach in actual simulations. For a priori tests, two separate simulations, RANS (E) and LES (F), were performed using the same grid in order to construct a hybrid-filtered field (H). It was shown that the extra terms arising out of the hybrid-filtered Navier–Stokes (HFNS) equations provided additional energy transfer from the RANS region to the LES region, thus alleviating the need for the ad hoc forcing term that has been used by some investigators. The complexity of the governing equations necessitated several modifications in order to render it suitable for a full numerical simulation. Despite some issues associated with the numerical implementation, good results were obtained for the mean velocity and skin friction coefficient. The mean velocity profile did not have an overshoot in the logarithmic region for most blending functions, confirming that proper energy transfer from the RANS to the LES region was a key to successful hybrid models. It is shown that Germano’s hybrid-filter approach is a viable and mathematically more appealing approach to simulate high Reynolds number turbulent flows.  相似文献   

13.
A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses.  相似文献   

14.
In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES–RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196–205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES–RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES–RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.   相似文献   

15.
A complementary experimental and computational study of the flow and mixing in a single annular gas turbine combustor has been carried out. The object of the investigation is a generic mixing chamber model, representing an unfolded segment of a simplified Rich-Quick-Lean (RQL) combustion chamber operating under isothermal, non-reacting conditions at ambient pressure. Two configurations without and with secondary air injection were considered. To provide an appropriate reference database several planar optical measurement techniques (time-resolved flow visualisation, PIV, QLS) were used. The PIV measurements have been performed providing profiles of all velocity and Reynolds-stress components at selected locations within the combustor. Application of a two-layer hybrid LES/RANS (HLR) method coupling a near-wall k − ε RANS model with conventional LES in the core flow was the focus of the computational work. In addition to the direct comparison with the experimental results, the HLR performance is comparatively assessed with the results obtained by using conventional LES using the same (coarser) grid as HLR and two eddy-viscosity-based RANS models. The HLR model reproduced all important flow features, in particular with regard to the penetrating behaviour of the secondary air jets, their interaction with the swirled main flow, swirl-induced free recirculation zone evolution and associated precessing-vortex core phenomenon in good agreement with experimental findings.  相似文献   

16.
Hybrid Reynolds Averaged Navier Stokes–Large Eddy Simulation is a trend which is becoming of common use in aerodynamics but has seldom been employed to simulate reactive flows. Such methods, like the Delayed Detached Eddy Simulation (DDES) presented in this article, have been created to treat near wall flows with a RANS approach while switching to LES in the separated flow region. It is indeed an affordable solution to simulate complex and unsteady compressible flows and to have access to accurate skin friction and wall thermal fluxes. In order to validate this technique in combustion, we chose a simple and well documented Backward Facing Step combustor. To account for turbulent combustion a Dynamic Thickened Flame was used. The results obtained on this case show a good agreement with the experimental database and are of the same quality as LES in the separated region for both inert and reactive flows. To cite this article: B. Sainte-Rose et al., C. R. Mecanique 337 (2009).  相似文献   

17.
Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.For some research studies in small domains, Δ is made much smaller than δ, and LES content is generated intentionally. However for natural DES applications in useful domains, it is preferable to over-ride the DES limiter and maintain RANS behavior in boundary layers, independent of Δ relative to δ. For this purpose, a new version of the technique – referred to as DDES, for Delayed DES – is presented which is based on a simple modification to DES97, similar to one proposed by Menter and Kuntz for the shear–stress transport (SST) model, but applicable to other models. Tests in boundary layers, on a single and a multi-element airfoil, a cylinder, and a backward-facing step demonstrate that RANS function is indeed maintained in thick boundary layers, without preventing LES function after massive separation. The new formulation better fulfills the intent of DES. Two other issues are discussed: the use of DES as a wall model in LES of attached flows, in which the known log-layer mismatch is not resolved by DDES; and a correction that is helpful at low cell Reynolds numbers.  相似文献   

18.
The viscosity plays an important role, and a multiphase solver is necessary to numerically simulate the oil spilling from a damaged double hull tank (DHT). However, it is uncertain whether turbulence modelling is necessary, which turbulence model is suitable; and what the role of compressibility of the fluids is. This paper presents experimental and numerical investigations to address these issues for various cases representing different scenarios of the oil spilling, including grounding and collision. In the numerical investigations, various approaches to model the turbulence, including the large eddy simulation (LES), direct numerical simulation and the Reynolds average Navier–Stokes equation (RANS) with different turbulence models, are employed. Based on the investigations, it is suggested that the effective Reynolds numbers corresponding to both oil outflow and water inflow shall be considered when classifying the significance of the turbulence and selecting the appropriate turbulence models. This is confirmed by new lab tests considering the axial offset between the internal and the external holes on two hulls of the DHT. The investigations conclude for numerically simulating oil spilling from a damaged DHT that when the effective Re is smaller the RANS approaches should not be used and LES modelling should be employed; while when the effective Reynolds numbers is large, the RANS models may be used as they can give similar results to LES in terms of the height of the mixture in the ballast tank and discharge but costing much less CPU time. The investigation on the role of the compressibility of the fluid reveals that the compressibility of the fluid may be considerable in a small temporal‐spatial scale but plays an insignificant role on macroscopic process of the oil spilling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
用基于M-SST模型的DES数值模拟喷流流场   总被引:6,自引:0,他引:6  
脱体涡数值模拟方法(dettached eddy simulation,DES)是把雷诺平均Navier-Stokes方程(RANS)方法及大涡模拟方法(LES)结合起来模拟有脱体涡的湍流流场的数值模拟方法,其主要思想是在物面附近解雷诺平均Navier-Stokes方程、在其他区域采用Smagorinski大涡模拟方法。本文在剪切应力传输(SST)湍流模型的基础上用DES及混合非结构网格数值模拟具有横向喷流的湍流流场,算法采用Osher逆风格式,利用该套程序(包括网格生成及算法),对导弹在不同马赫数下的喷流流场进行了数值模拟,并与同时开展的实验研究的结果进行了对比,结果表明用该方法处理这类问题是较准确的。  相似文献   

20.
Large eddy simulation (LES) is combined with the Reynolds-averaged Navier–Stokes (RANS) equation in a turbulent channel-flow calculation. A one-equation subgrid-scale model is solved in a three-dimensional grid in the near-wall region whereas the standard k–ε model is solved in a one-dimensional grid in the outer region away from the wall. The two grid systems are overlapped to connect the two models smoothly. A turbulent channel flow is calculated at Reynolds numbers higher than typical LES and several statistical quantities are examined. The mean velocity profile is in good agreement with the logarithmic law. The profile of the turbulent kinetic energy in the near-wall region is smoothly connected with that of the turbulent energy for the k–ε model in the outer region. Turbulence statistics show that the solution in the near-wall region is as accurate as a usual LES. The present approach is different from wall modeling in LES that uses a RANS model near the wall. The former is not as efficient as the latter for calculating high-Reynolds-number flows. Nevertheless, the present method of combining the two models is expected to pave the way for constructing a unified turbulence model that is useful for many purposes including wall modeling. Received 11 June 1999 and accepted 15 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号