首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this study, hydrogen sensing properties of nanoporous Pd films based on Anodic Aluminium Oxide (AAO) templates grown on a silicon substrate have been investigated at various temperatures (25–100°C) and hydrogen concentrations (100–1000 ppm) to determine the temperature-sensitivity relationship. For this purpose, a hexagonally shaped AAO template of approximately 50 nm in diameter and 700 nm in length with 80 nm interpore distances was fabricated using two-step anodization of an Al film deposited on an n-type (100) oriented oxidized Si substrate. Then, the nanoporous surface of the AAO template was used as a substrate for supporting a nanoporous Pd film of an approximately thickness of 60 nm. The morphologies of the AAO template and Pd film coated on the AAO template were studied mainly by Scanning Electron Microscopy (SEM). Hydrogen sensing properties of the nanoporous Pd film were measured using a resistance transient method. It was found that the sensor response of the nanoporous Pd films on the AAO template was better than the traditional Pd thin film sensors, the sensitivity of the sensor was approximately 1.8% for 1000 ppm H2, and the detection limit was lower than 100 ppm at room temperature. The highest sensitivity was measured at room temperature.  相似文献   

2.
Thick MgB2 (magnesium diborate) films, ∼10 μm, with T c (onset) = 39.4 K and T c (zero) = 39.2 K have been successfully grown on a stainless steel substrate using a technique called hybrid physical-chemical deposition (HPCVD). The deposition rate is high, ∼6.7 nm/s. The X-ray diffraction (XRD) indicates that it is highly (101) and c-axis oriented. The scanning electron microscope (SEM) images demonstrate that the film grown is in “island-mode”. The uniform superconducting phase in the film is shown by the M-T measurement.  相似文献   

3.
Boiling occurs in a solution of oxygen and fullerenes in CCl4 upon optical pumping of C60 upon the fast appearance of incandescent fullerenes in cold solvent. Upon single-photon absorption, a spherical zone of the critical state of CCl4 is formed within 5 ns (with a diameter of 22–25 nm, P cr ∼ 45 atm, and T cr ∼ 556 K). This spherical zone (gas-bubble nucleus) expands to a diameter of ∼100–400 nm for 2–5 ns. If the external pressure (natural or artificial) is rapidly released, the bubble accelerates and emerges into a vacuum chamber within 0.7–25 μs (the length of the passage is 0.1–5 cm depending on the construction of the singlet oxygen generator). We note that singlet oxygen appears 50 ns after the absorption of a photon by fullerene (i.e., inside of the almost formed gas bubble that only begins to emerge from the liquid to a low-pressure gas region).  相似文献   

4.
The dispersal of CuO catalyst on the surface of the semiconducting SnO2 film is found to be of vital importance for improving the sensitivity and the response speed of a SnO2 gas sensor for H2S gas detection. Ultra-thin CuO islands (8 nm thin and 0.6 mm diameter) prepared by evaporating Cu through a mesh and subsequent oxidation yield a fast response speed and recovery. Ultimately nanoparticles of Cu (average size = 15 nm) prepared by a chemical technique using a reverse micelle method involving the reduction of Cu(NO3)2 by NaBH4 exhibited significant improvement in the gas sensing characteristics of SnO2 films. A fast response speed of ∼14 s and a recovery time of ∼60 s for trace level ∼20 ppm H2S gas detection have been recorded. The sensor operating temperature (130° C) is low and the sensitivity (S = 2.06 × 103) is high. It is found that the spreading over of CuO catalyst in the nanoscale range on the surface of SnO2 allows effective removal of excess adsorbed oxygen from the uncovered SnO2 surface due to spill over of hydrogen dissociated from the H2S-CuO interaction.  相似文献   

5.
The GaAs granular films have been prepared by electrochemical anodic etching of n-GaAs in HCl electrolyte at different etching temperatures. The microstructure and optical properties of the films were investigated by micro-Raman spectrum, atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. Raman spectra reveal marked redshift and broadening, which could be explained by phonon confinement model. Results show the GaAs nanocrystalline films have formed during the anodic etching process under certain chemical conditions. Two “infrared” PL bands at ∼860 nm and ∼920 nm and a strongly enhanced visible PL band envelope around 550 nm were observed in the film prepared at etching temperature of 50 °C. The “green” PL band envelope is attributed to both quantum confinement in GaAs nanocrystals and PL of Ga2O3 and As2O3. The results reveal that the energy band structure of GaAs granular films is closely related to the etching temperatures. PACS 81.07.Bc; 78.30.Fs; 78.55.Cr  相似文献   

6.
Compositionally graded (Ba1-xSrx)TiO3 (BST) (x:0.0∼0.25) thin films were grown on Pt (111)/TiO2/SiO2/Si (100) substrates using layer-by-layer pulsed laser deposition in the temperature range 550–650 °C. Both downgraded (Ba/Sr ratio varying from 100/0 at the bottom surface to 75/25 at the top surface) and upgraded (Ba/Sr ratio varying from 75/25 at the bottom surface to 100/0 at the top surface) BST films were prepared. Their microstructures were systematically studied by X-ray diffractometry and scanning electron microscopy. A grain morphology transition from large ‘rosettes’ (>0.30 μm) to small compact grains (70–110 nm) was observed in the downgraded BST films as the deposition temperature was increased from 550 to 650 °C. No such grain morphology transition was detected in the upgraded BST films. Dielectric measurements with metal electrodes revealed an enhanced dielectric behavior in the downgraded films. This enhancement is mainly attributed to the large compressive stress field built up near the interface between the downgraded film and substrate. Furthermore, the BaTiO3 layer in the downgraded BST films not only serves as a bottom layer but also as an excellent seeding layer for enhancing the crystallization of the subsequent film layers in the downgraded films. Received: 10 December 2001 / Accepted: 12 March 2002 / Published online: 19 July 2002 RID="*" ID="*"Corresponding author. Fax: 86-25/359-5535, E-mail: xhzhu@public1.ptt.js.cn  相似文献   

7.
Thin films of a tailor-made photodecomposible aryltriazene polymer were applied in a modified laser-induced forward transfer (LIFT) process as sacrificial release layers. The photopolymer film acts as an intermediate energy-absorbing dynamic release layer (DRL) that decomposes efficiently into small volatile fragments upon UV laser irradiation. A fast-expanding pressure jet is generated which is used to propel an overlying transfer material from the source target onto a receiver. This DRL-assisted laser direct-write process allows the precise deposition of intact material pixels with micrometer resolution and by single laser pulses. Triazene-based photopolymer DRL donor systems were studied to derive optimum conditions for film thickness and laser fluences necessary for a defined transfer process at the emission wavelength of a XeCl excimer laser (308 nm). Photoablation, surface detachment, delamination and transfer behavior of aryltriazene polymer films with a thickness from 25 nm to ∼400 nm were investigated in order to improve the process control parameters for the fabrication of functional thin-film devices of microdeposited heat- and UV-sensitive materials.  相似文献   

8.
Photoacoustic spectroscopy is used to study optical absorption in diamond powders and polycrystalline films. The photoacoustic spectra of diamond powders with crystallite sizes in the range from ∼100 μm to 4 nm and diamond films grown by chemical vapor deposition (CVD) had a number of general characteristic features corresponding to the fundamental absorption edge for light with photon energies exceeding the width of the diamond band gap (∼5.4 eV) and to absorption in the visible and infrared by crystal-structure defects and the presence of non-diamond carbon. For samples of thin (∼10 μm) diamond films on silicon, the photoacoustic spectra revealed peculiarities associated with absorption in the silicon substrate of light transmitted by the diamond film. The shape of the spectral dependence of the amplitude of the photoacoustic signal in the ultraviolet indicates considerable scattering of light specularly reflected from the randomly distributed faces of the diamond crystallites both in the polycrystalline films and in the powders. The dependence of the shape of the photoacoustic spectra on the light modulation frequency allows one to estimate the thermal conductivity of the diamond films, which turns out to be significantly lower than the thermal conductivity of single-crystal diamond. Fiz. Tverd. Tela (St. Petersburg) 39, 1787–1791 (October 1997)  相似文献   

9.
Hydrogenated nanocrystalline silicon germanium thin films (nc-SiGe:H) is an interesting alternative material to replace hydrogenated nanocrystalline silicon (nc-Si:H) as the narrow bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc-Si) triple-junction solar cell due to its higher optical absorption in the wavelength range of interest. In this paper, we present results of optical, structural investigations and electrical characterization of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HW-CVD) with a coil-shaped tungsten filament and with a disilane/germane/hydrogen gas mixture. The optical band gaps of a-SiGe:H and nc-SiGe:H thin-films, which are deposited with the same disilane/germane/hydrogen gas mixture ratio of 3.4 : 1.7 : 7, are about 1.58 eV and 2.1 eV, respectively. The nc-SiGe:H thin film exhibits a larger optical absorption coefficient of about 2–4 in the 600–900 nm range when compared to nc-Si:H thin film. Therefore, a thinner nc-SiGe:H layer of ∼500 nm thickness may be sufficient for the narrow bandgap absorber in an a-Si based multiple-junction solar cell. We enhanced the transport properties as measured by the photoconductivity frequency mixing technique. These improved alloys do not necessarily show an improvement in the degree of structural heterogeneity on the nanometer scale as measured by smallangle X-ray scattering. Decreasing both the filament temperature and substrate temperature produced a film with relatively low structural heterogeneity while photoluminescence showed an order of magnitude increase in defect density for a similar change in the process.   相似文献   

10.
《Composite Interfaces》2013,20(1):83-92
A photon transmission method was used to study latex film formation induced by organic solvent vapor. Various films with the same latex content were prepared separately from the poly(methyl methacrylate) (PMMA) particles and exposed to vapor of chloroform-heptane mixture in various percentage volumes of chloroform. Transmitted photon intensities, I tr, from these films increased in time under vapor exposure. The increase in I tr is attributed to the increase in 'crossing density' at the junction surface. The Prager-Tirrell model was employed to obtained back-and-forth frequency, ν of the reptating polymer chain during film formation induced by solvent vapor. ν values were obtained and found to be strongly correlated with the percent of chloroform in the solvent mixture. At high and low chloroform contents, polymer chains diffuse according to t 1/2 and t 1/4 laws respectively.  相似文献   

11.
The photochemistry of SO2 on thin epitaxial Ag films (5–60 nm) deposited on Si(100) has been studied using laser light with the wavelengths of 266, 355, and 532 nm. SO2 desorbs with cross sections of 1.7×10-19,1.7×10-20 and 2.9×10-21 cm2, respectively. The average translation energy, 〈Etrans/2k〉, is 440 K for 266 and 355 nm light, and 270 K for 532 nm light. Cross sections for a 60 nm thick Ag film are practically identical to the ones for Ag(111) as the substrate. An increase by a factor of ∼3.5 is observed when the film thickness is reduced to 5 nm for 266 and 355 nm light. No significant change is observed for 532 nm excitation. The film thickness has no significant influence on the translational energy of the photodesorbed molecules. The data are discussed in connection with the change of absorptivity of the metal film–semiconductor system. A model is put forward which takes into account the light absorption in the Si substrate and the reduced relaxation of excited electrons in Si. Modelling indicates that electrons excited in the Si substrate with energies and parallel momenta not allowed in Ag contribute to the surface chemistry after crossing the gap in the projected band structure of Ag(111). PACS 82.45.MP; 73.63.-b; 82.50.Bc  相似文献   

12.
We present the impact of the film thickness on the coexistence of various magnetic phases and its link to the magnetoresistance of Nd0.51Sr0.49MnO3 thin films. These epitaxial films are deposited on LaAlO3 (001) substrates by DC magnetron sputtering. Films with thicknesses of approximately 30 nm are found to be under full compressive strain while those with thicknesses ∼100 nm and beyond exhibit the presence of both strained and relaxed phases, as evidenced from X-ray diffraction studies. Both films exhibit multiple magnetic transitions controlled by strong electron correlations and phase coexistence. These films also display insulator–metal transitions (IMT) and colossal magnetoresistance (CMR) under moderate magnetic fields. Among the two set of films, only the 30-nm films show a weak signature of charge ordering at T≈50 K. Even at temperatures much lower than the IMT, the 30-nm films show huge magnetoresistance (MR) ∼80%. This suggests presence of softened charge-ordered insulating (COI) clusters that are transformed into ferromagnetic metallic (FMM) ones by the external magnetic field. In the 100-nm films, the corresponding MR is suppressed to less than 20%. Our study demonstrates that the softening of the COI phase is induced by the combined effect of the in-plane compressive strain and a slight reduction in Sr concentration.  相似文献   

13.
金刚石薄膜的红外椭圆偏振光谱研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用红外椭圆偏振光谱对微波等离子体化学气相沉积法(MPCVD)和热丝化学气相沉积法(H-FCVD)制备的金刚石薄膜在红外波长范围(2.5—12.5μm)的光学参数进行了测量.建立了不同的光学模型,且在模型中采用Bruggeman有效介质近似方法综合考虑了薄膜表面和界面的椭偏效应.结果表明,MPCVD金刚石膜的椭偏数据在模型引入了厚度为77.5nm的硅表面氧化层、HFCVD金刚石膜引入879nm粗糙层之后能得到很好的拟合.最后对两种模型下金刚石薄膜的折射率和消光系数进行了计算,表明MPCVD金刚石薄膜的红外 关键词: 金刚石薄膜 红外椭圆偏振光谱 光学参数 有效介质近似  相似文献   

14.
Experiments in the past 1.5 decades have found that the glass transition temperature of polymer films can be noticeably different from the bulk when the film thickness is decreased below ∼100  nm. On the other hand, many dynamic measurements have found results inconsistent with the observed change in the glass transition temperature. One frequently cited reason is that the dynamic properties being probed may not be directly related to the glass transition. Viscosity is a property traditionally used to characterize the dynamic slowing down occurring to a material at the glass transition. In this paper, we report experimental result showing that the viscosity of polystyrene films supported by oxide-coated silicon decreases with decreasing film thickness, consistent with the observed glass transition temperature of the films.  相似文献   

15.
Ultrashort laser pulse transfers metal into a two-temperature warm dense matter state and triggers a chain of hydrodynamic and kinetic processes—melting, expansion, stretching, creation of tensile stress and transition into metastable state. We study the response of aluminum film deposited on a glass substrate to irradiation by a pump laser pulse transmitted through glass. Several films with thicknesses from 350 to 1200 nm have been investigated. The smallest thickness is of the order of the heating depth d T∼100 nm in Al. The d T-layer and the free rear side of the film are coupled through pressure waves propagating between them. Therefore, the processes within d T-layer affects the time dependent displacement Δ x rear(t) of the rear surface. We compare simulated and experimental dependencies Δ x rear(t) obtained by the pump–probe technique. It allows us to define a thickness of molten Al layer and explore the two-temperature processes occurring inside the heated layer.  相似文献   

16.
Surface damage produced by single MeV-GeV heavy ions impacting ultrathin polymer films has been shown to be weaker than those observed under bulk (thick film) conditions. The decrease in damage efficiency has been attributed to the suppression of long-range effects arising from excited atoms lying deeply in the solid. This raises the possibility that the substrate of the films itself is relevant to the radiation effects seen at the top surface. Here, the role of the substrate on cratering induced by individual 1.1 GeV Au ions in ultrathin poly(methyl methacrylate) (PMMA) layers is investigated. Materials of different thermal and electrical properties (Si, SiO2, and Au) are used as substrates to deposit PMMA thin films of various thicknesses from ∼1 to ∼300 nm. We show that in films thinner than ∼40 nm craters are modulated by the underlying substrate to a degree that depends on the transport properties of the medium. Crater size in ultrathin films deposited on the insulating SiO2 is larger than in similar films deposited on the conducting Au layer. This is consistent with an inefficient coupling of the electronic excitation energy to the atomic cores in metals. On the other hand, the damage on films deposited on SiO2 is not very different from the Si substrate with a native oxide layer, suggesting, in addition, poor energy transmission across the film/substrate interface. The experimental observations are also compared to calculations from an analytical model based on energy addition and transport from the excited ion track, which describe only partially the results.  相似文献   

17.
The light-emitting properties of cubic silicon carbide films grown by vacuum vapor phase epitaxy on Si(100) and Si(111) substrates under conditions of decreased growth temperatures (T gr ∼ 900–700°C) have been discussed. Structural investigations have revealed a nanocrystalline structure and, simultaneously, a homogeneity of the phase composition of the grown 3C-SiC films. Photoluminescence spectra of these structures under excitation of the electronic subsystem by a helium-cadmium laser (λexcit = 325 nm) are characterized by a rather intense luminescence band with the maximum shifted toward the ultraviolet (∼3 eV) region of the spectral range. It has been found that the integral curve of photoluminescence at low temperatures of measurements is split into a set of Lorentzian components. The correlation between these components and the specific features of the crystal structure of the grown silicon carbide layers has been analyzed.  相似文献   

18.
Tin oxide (SnO2) thin films have been grown on glass substrates using atmospheric pressure chemical vapour deposition (APCVD) method. During the deposition, the substrate temperature was kept at 400°C–500°C. The structural properties, surface morphology and chemical composition of the deposited film were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and Rutherford back scattering (RBS) spectrum. XRD pattern showed that the preferred orientation was (110) having tetragonal structure. The optical properties of the films were studied by measuring the transmittance, absorbance and reflectance spectra between λ = 254 nm to 1400 nm and the optical constants were calculated. Typical SnO2 film transmits ∼ 94% of visible light. The electrical properties of the films were studied using four-probe method and Hall-voltage measurement experiment. The films showed room temperature conductivity in the range 1.08 × 102 to 1.69 × 102 Ω−1cm−1.  相似文献   

19.
Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al2O3 layer. The double-coating of PEM + Al2O3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al2O3 layer. The enhanced water vapor barrier characteristics of the PEM + Al2O3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.  相似文献   

20.
The aerosol deposition of detonation nanodiamonds (DNDs) on a silicon substrate is comprehensively studied, and the possibility of subsequent growth of nanocrystalline diamond films and isolated particles on substrates coated with DNDs is demonstrated. It is shown that a change in the deposition time and the weight concentration of DNDs in a suspension in the range 0.001–1% results in a change in the shape of DND agglomerates and their number per unit substrate surface area N s from 108 to 1011 cm−2. Submicron isolated diamond particles are grown on a substrate coated with DND agglomerates at N s ≈ 108 cm−2 using microwave plasma-enhanced chemical vapor deposition. At N s ≈ 1010 cm−2, thin (∼100 nm) nanodiamond films with a root-mean-square surface roughness less than 15 nm are grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号