首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.  相似文献   

2.
The quantum adiabatic evolution is very important for quantum mechanics and applied in quantum information processing to solve the difficult problem. The traditional quantum adiabatic algorithms use the linear interpolating to construct quantum evolution paths. We construct special evolution paths to speedup quantum evolutions. By choosing state-dependent correlations some constant time evolution paths may be generated. This result is very useful quantum adiabatic simulations.  相似文献   

3.
孙杰  路松峰  刘芳  杨莉萍 《中国物理 B》2012,21(1):10306-010306
Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global” one, this “new” algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M=1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed.  相似文献   

4.
吴飙  刘杰 《物理》2005,34(12):883-886
在绝热演化中的几何相位(即Berry相位)被推广到包括非本征态的一般量子态.这个新的几何相位同时适用于线性量子系统和非线性量子系统.它对于后者尤其重要因为非线性量子系统的绝热演化不能通过本征态的线性叠加来描述.在线性量子系统中,新定义的几何相位是各个本征态Berry相位的权重平均.  相似文献   

5.
We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can construct a quantum adiabatic algorithm with time complexity of O(L). Additionally, our construction shows that one may exponentially speed up some quantum adiabatic algorithms by properly choosing an evolution path.  相似文献   

6.
Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.  相似文献   

7.
Quantum adiabatic evolution describes the dynamical evolution of a slowly driven Hamiltonian. In most systems undergoing spontaneous symmetry-breaking transitions, the symmetry-protected quantum adiabatic evolution can still appear, even when the two lowest eigenstates become degenerate. Here, a general derivation to revisit the symmetry-dependent transition and the symmetry-dependent adiabatic condition (SDAC) is given. Further, based on the SDAC, an adiabatic-parameter-fixed sweeping scheme is used for achieving fast adiabatic evolution, which is more efficient than the linear sweeping scheme. In the limit of small adiabatic parameter, an analytic inequality is obtained for the ground state fidelity only dependent on the adiabatic parameter. The general statements are then demonstrated via two typical systems. Besides, the robustness of the symmetry-dependent adiabatic evolution against weak symmetry-breaking sources is studied. The findings can be tested via the techniques in quantum annealing and may provide promising applications in practical quantum technologies.  相似文献   

8.
We consider the adiabatic limit of Hadamard states for free quantum Klein–Gordon fields, when the background metric and the field mass are slowly varied from their initial to final values. If the Klein–Gordon field stays massive, we prove that the adiabatic limit of the initial vacuum state is the (final) vacuum state, by extending to the symplectic framework the adiabatic theorem of Avron–Seiler–Yaffe. In cases when only the field mass is varied, using an abstract version of the mode decomposition method we can also consider the case when the initial or final mass vanishes, and the initial state is either a thermal state or a more general Hadamard state.  相似文献   

9.
Unstructured Adiabatic Quantum Search   总被引:2,自引:0,他引:2  
In the adiabatic quantum computation model, a computational procedure is described by the continuous time evolution of a time dependent Hamiltonian. We apply this method to the Grover's problem, i.e., searching a marked item in an unstructured database. Classically, the problem can be solved only in a running time of order O(N) (where N is the number of items in the database), whereas in the quantum model a speed up of order has been obtained. We show that in the adiabatic quantum model, by a suitable choice of the time-dependent Hamiltonian, it is possible to do the calculation in constant time, independent of the the number of items in the database. However, in this case the initial time-complexity of is replaced by the complexity of implementing the driving Hamiltonian.  相似文献   

10.
We study the adiabatic time evolution of quantum resonances over time scales which are small compared to the lifetime of the resonances. We consider three typical examples of resonances: The first one is that of shape resonances corresponding, for example, to the state of a quantum-mechanical particle in a potential well whose shape changes over time scales small compared to the escape time of the particle from the well. Our approach to studying the adiabatic evolution of shape resonances is based on a precise form of the time-energy uncertainty relation and the usual adiabatic theorem in quantum mechanics. The second example concerns resonances that appear as isolated complex eigenvalues of spectrally deformed Hamiltonians, such as those encountered in the N-body Stark effect. Our approach to study such resonances is based on the Balslev-Combes theory of dilatation-analytic Hamiltonians and an adiabatic theorem for nonnormal generators of time evolution. Our third example concerns resonances arising from eigenvalues embedded in the continuous spectrum when a perturbation is turned on, such as those encountered when a small system is coupled to an infinitely extended, dispersive medium. Our approach to this class of examples is based on an extension of adiabatic theorems without a spectral gap condition. We finally comment on resonance crossings, which can be studied using the last approach.  相似文献   

11.
The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics.In this work, by solving the quantum Langevin equation, we study the von Neumann entropy of a particle undergoing quantum Brownian motion. We obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy in the weak coupling limit. Moreover, we find that for the thermodynamic equilibrium initial state, all terms odd in h are exactly zero. Our results bring important insights to the understanding of entropy in open quantum systems.  相似文献   

12.
《Physics letters. A》2006,354(4):271-273
Deutsch–Jozsa algorithm has been implemented via a quantum adiabatic evolution by S. Das et al. [S. Das, R. Kobes, G. Kunstatter, Phys. Rev. A 65 (2002) 062310]. This adiabatic algorithm gives rise to a quadratic speed up over classical algorithms. We show that a modified version of the adiabatic evolution in that paper can improve the performance to constant time.  相似文献   

13.
Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution.We will estimate required running time for this algorithm by means of an analytical solution of timedependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing.These results can be useful for experimental implementation.  相似文献   

14.
For the two-mode exciton system formed by the quasi-spin-wave collective excitation of many Lambda atoms fixed at the lattice sites of a crystal, we discover a dynamical symmetry depicted by the semidirect product algebra SU2( multiply sign in circle) h(2) in the large N limit with low excitations. With the help of the spectral generating algebra method, we obtain a larger class of exact zero-eigenvalue states adiabatically interpolating between the initial state of photon-type and the final state of quasi-spin-wave exciton-type. The conditions for the adiabatic passage of dark states are shown to be valid, even with the presence of the level degeneracy. These theoretical results can lead to the proposal of a new protocol for implementing quantum memory robust against quantum decoherence.  相似文献   

15.
It has been recently argued that adiabatic quantum optimization would fail in solving NP-complete problems because of the occurrence of exponentially small gaps due to crossing of local minima of the final Hamiltonian with its global minimum near the end of the adiabatic evolution. Using perturbation expansion, we analytically show that for the NP-hard problem known as maximum independent set, there always exist adiabatic paths along which no such crossings occur. Therefore, in order to prove that adiabatic quantum optimization fails for any NP-complete problem, one must prove that it is impossible to find any such path in polynomial time.  相似文献   

16.
In this paper, we discuss the question of the minimum time needed for any state of a given quantum system to evolve into a distinct (orthogonal) state. This problem is relevant to deriving physical limits in quantum computation and quantum information processing. Here, we consider both cases of nonadiabatic and adiabatic evolution and we derive the Hamiltonians corresponding to the minimum time evolution predicted by the Margolus–Levitin theorem.  相似文献   

17.
原子自发辐射中偶极矩的涨落与最大纠缠态的保持   总被引:7,自引:4,他引:3  
研究了二能级原子与电磁场相互作用体系的自发辐射与量子纠缠态.在原子的自发辐射过程中,其偶极矩的期待值总是零,但偶极矩的涨落恒等于一个不为零的常量,因此原子的自发辐射是由真空起伏导致偶极矩的涨落引起的.Jaynes-Cummings模型是产生量子纠缠态的重要体系,研究发现,原子与场纠缠态的信息熵和纠缠度随时间作周期性的振荡,量子态在非纠缠与纠缠态之间变化.更为重要的是,在失谐量适当时,量子态将长时间停留在最大纠缠态.  相似文献   

18.
用含时黄金规则波包法,对HeI2分子在低初始振动激发(v<12)态下振动预离解动力学作了全维量子力学计算。所预言的总衰变宽度和寿命与谱线宽和皮秒时间分解的实时态-态测量外推数据符合得相当好。计算的总衰变宽度对初始振动态v是敏感的并呈现一种非线性关系。结果表明低振动激发HeI2分子衰变模式仍应是量子力学的。除终态相互作用对决定终转动分布有重要作用以外,首次发现,低振动激发态的初始特性也能显著影响终转动态分布。用I2的转动常数对v的关系合理地解释了这个独特现象  相似文献   

19.
W. Wang  S.C. Hou  X.X. Yi 《Annals of Physics》2012,327(5):1293-1303
One difficulty with adiabatic quantum computation is the limit on the computation time. Here we propose two schemes to speed-up the adiabatic evolution. To apply this controlled adiabatic evolution to adiabatic quantum computation, we design one of the schemes without any explicit knowledge of the instantaneous eigenstates of the final Hamiltonian. Whereas in another scheme, we assume that the ground state of the Hamiltonian is known, and this information can be used to design the control. By these techniques, a linear speed-up proportional to the nonlinearity can be predicted. As an illustration, we study a two-level system driven by a time-dependent magnetic field under the control. The problem of finding an item in an unsorted database by adiabatic evolution is also examined. The physics behind the control scheme is interpreted.  相似文献   

20.
运用全量子理论研究了初始处于Bell态(对称迭加态或反对称态)的两原子与双模纠缠相干光场相互作用系统中场熵的演化特性. 分析了光场强度、光场纠缠度及原子间相互作用强度对场熵演化特性的影响. 结果表明:原子初态处于反对称态时,场熵始终为零;原子初态处在对称迭加态时,增大光场强度场熵的时间演化曲线逐渐变成较规则的振荡曲线,原子间的相互作用强度对双原子间纠缠度有显著的非线性调制作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号