首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient.  相似文献   

2.
A novel, simple, and rapid reversed‐phase vortex‐assisted liquid–liquid microextraction coupled with high‐performance liquid chromatography has been introduced for the extraction, clean‐up, and preconcentration of amygdalin in oil and kernel samples. In this technique, deionized water was used as the extracting solvent. Unlike the reversed‐phase dispersive liquid–liquid microextraction, dispersive solvent was eliminated in the proposed method. Various parameters that affected the extraction efficiency, such as extracting solvent volume and its pH, vortex, and centrifuging times were evaluated and optimized. The calibration curve shows good linearity (r2 = 0.9955) and precision (RSD < 5.2%) in the range of 0.07–20 μg/mL. The limit of detection and limit of quantitation were 0.02 and 0.07 μg/mL, respectively. The recoveries were in the range of 96.0–102.0% with relative standard deviation values ranging from 4.0 to 5.1%. Unlike the conventional extraction methods for plant extracts, no evaporative and re‐solubilizing operations were needed in the proposed technique.  相似文献   

3.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

4.
A simple technique for the collection of an extraction solvent lighter than water after dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography with ultraviolet detection was developed for the determination of four paraben preservatives in aqueous samples. After the extraction procedure, low‐density organic solvent together with some little aqueous phase was separated by using a disposable glass Pasteur pipette. Next, the flow of the aqueous phase was stopped by successive dipping the capillary tip of the pipette into anhydrous Na2SO4. The upper organic layer was then removed simply with a microsyringe and injected into the high‐performance liquid chromatography system. Experimental parameters that affect the extraction efficiency were investigated and optimized. Under optimal extraction conditions, the extraction recoveries ranged from 25 to 86%. Good linearity with coefficients with the square of correlation coefficients ranging from 0.9984 to 0.9998 was observed in the concentration range of 0.001–0.5 μg/mL. The relative standard deviations ranged from 4.1 to 9.3% (n = 5) for all compounds. The limits of detection ranged from 0.021 to 0.046 ng/mL. The method was successfully applied for the determination of parabens in tap water and fruit juice samples and good recoveries (61–108%) were achieved for spiked samples.  相似文献   

5.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

6.
Three modes of liquid–liquid based microextraction techniques – namely auxiliary solvent‐assisted dispersive liquid–liquid microextraction, auxiliary solvent‐assisted dispersive liquid–liquid microextraction with low‐solvent consumption, and ultrasound‐assisted emulsification microextraction – were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound‐assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10?5 mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02–0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples.  相似文献   

7.
Two microextraction techniques – liquid phase microextraction based on solidification of a floating organic drop (LPME‐SFO) and dispersive liquid–liquid microextraction combined with a solidification of a floating organic drop (DLLME‐SFO) – are explored for benzene, toluene, ethylbenzene and o‐xylene sampling and preconcentration. The investigation covers the effects of extraction solvent type, extraction and disperser solvents' volume, and the extraction time. For both techniques 1‐undecanol containing n‐heptane as internal standard was used as an extracting solvent. For DLLME‐SFO acetone was used as a disperser solvent. The calibration curves for both techniques and for all the analytes were linear up to 10 μg/mL, correlation coefficients were in the range 0.997–0.998, enrichment factors were from 87 for benzene to 290 for o‐xylene, detection limits were from 0.31 and 0.35 μg/L for benzene to 0.15 and 0.10 μg/L for o‐xylene for LPME‐SFO and DLLME‐SFO, respectively. Repeatabilities of the results were acceptable with RSDs up to 12%. Being comparable with LPME‐SFO in the analytical characteristics, DLLME‐SFO is superior to LPME‐SFO in the extraction time. A possibility to apply the proposed techniques for volatile aromatic hydrocarbons determination in tap water and snow was demonstrated.  相似文献   

8.
A novel low‐density solvent‐based vortex‐assisted surfactant‐enhanced‐emulsification liquid–liquid microextraction with the solidification of floating organic droplet method coupled with high‐performance liquid chromatography was developed for the determination of 3,5,6‐trichloro‐2‐pyridinol, phoxim and chlorpyrifos‐methyl in water samples. In this method, the addition of a surfactant could enhance the speed of the mass transfer from the sample solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous by the vortex process. The main parameters affecting the extraction efficiency were investigated and the optimum conditions were established as follows: 80 μL 1‐undecanol as extraction solvent, 0.2 mmol/L of Triton X‐114 selected as the surfactant, the vortex time was fixed at 60 s with the vortex agitator set at 3000 rpm, the concentration of acetic acid in sample solution was 0.4% v/v and 1.0 g addition of NaCl. Under the optimum conditions, the enrichment factors were from 172 to 186 for the three analytes. The linear ranges were from 0.5 to 500 μg/L with a coefficient of determination (r2) of between 0.9991 and 0.9995. Limits of detections were varied between 0.05 and 0.12 μg/L. The relative standard deviations (n = 6) ranged from 0.26 to 2.62%.  相似文献   

9.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

10.
The rapid screening of trace levels of short‐chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex‐assisted liquid–liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex‐assisted liquid–liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex‐assisted liquid–liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short‐chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L.  相似文献   

11.
A novel liquid–liquid microextraction method, namely, solvent‐vapor‐assisted liquid–liquid microextraction for the determination of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and bis(2‐ethylhexyl) phthalate in the aqueous samples using gas chromatography with mass spectrometry was developed. In the proposed method, extracting solvent was heated, and solvent vapor as the extracting phase was injected into the sample solution. As a result of the low temperature of the sample solution and higher density of the extracting phase than the aqueous medium, solvent vapor was condensed and an organic‐phase drop formed in the bottom of sample tube. Because of the gas status of the extracting solvent, the surface area between the extracting solvent and the aqueous sample was remarkably high. Under the optimized conditions, tetrachloride carbon was used as an extracting solvent. The method shows high coefficient of determination (R 2) values in the range of 0.5–200 and 1.0–200 ng/mL for the target analytes. Enrichment factors and limits of detection for the studied phthalates are obtained in the ranges of 2800–3000 and 0.15–0.3 ng/mL, respectively. Recoveries and relative standard deviations were in the range of 80.0–100.0 and 2.2–7.8%, respectively. The proposed method successfully used for analysis of several aqueous samples.  相似文献   

12.
A novel dispersive liquid‐phase microextraction method without dispersive solvents has been developed for the enrichment and sensitive determination of triclosan and triclocarban in environmental water samples prior to HPLC‐ESI‐MS/MS. This method used only green solvent 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as extraction solvent and overcame the demerits of the use of toxic solvents and the instability of the suspending drop in single drop liquid‐phase microextraction. Important factors that may influence the enrichment efficiencies, such as volume of ionic liquid, pH of solutions, extraction time, centrifuging time and temperature, were systematically investigated and optimized. Under optimum conditions, linearity of the method was observed in the range of 0.1–20 μg/L for triclocarban and 0.5–100 μg/L for triclosan, respectively, with adequate correlation coefficients (R>0.9990). The proposed method has been found to have excellent detection sensitivity with LODs of 0.04 and 0.3 μg/L, and precisions of 4.7 and 6.0% (RSDs, n=5) for triclocarban and triclosan, respectively. This method has been successfully applied to analyze real water samples and satisfactory results were achieved.  相似文献   

13.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   

14.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

15.
In this study, simple and efficient ultrasound‐assisted dispersive liquid‐liquid microextraction combined with gas chromatography (GC) was developed for the preconcentration and determination of methyl‐tert‐butyl ether (MTBE) in water samples. One hundred microliters of benzyl alcohol was injected slowly into 10 mL home‐designed centrifuge glass vial containing an aqueous sample with 30% (w/v) of NaCl that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 μL of separated benzyl alcohol was injected into a gas chromatographic system equipped with a flame ionization detector (GC‐FID) for analysis. Several factors influencing the extraction efficiency such as the nature and volume of organic solvent, extraction temperature, ionic strength and centrifugation times were investigated and optimized. Using optimum extraction conditions a detection limit of 0.05 μg L‐1 and a good linearity (r2 = 0.998) in a calibration range of 0.1‐500 μg L‐1 were achieved. This proposed method was successfully applied to the analysis of MTBE in tap, well and a ground water sam ple contaminated by leaking gasoline from an underground storage tank (LUST) in a gasoline service station.  相似文献   

16.
In the present study, a novel configuration of liquid‐phase microextraction was proposed, in which a magnetic stirrer with a groove was used as the extractant phase holder. It was termed as magnetic stirrer liquid‐phase microextraction. In this way, the stability of the organic solvent was much improved under high stirring speed; the extraction efficiency was enhanced due to the enormously enlarged contact area between the organic solvent and aqueous phase. The extraction performance of the magnetic stirrer liquid‐phase microextraction was studied using chlorobenzenes as the probe analytes. A wide linearity range (20 pg/mL to 200 ng/mL) with a satisfactory linearity coefficient (r2 > 0.998) was obtained. Limits of detection ranged from 9.0 to 12.0 pg/mL. Good reproducibility was achieved with intra‐ and inter‐day relative standard deviations <4.8%. The proposed magnetic stirrer liquid‐phase microextraction was simple, environmentally friendly and efficient; compared to single‐drop microextraction, it had obvious advantages in terms of reproducibility and extraction efficiency. It is a promising miniaturized liquid‐phase technology for real applications.  相似文献   

17.
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid‐phase extraction assisted reversed‐phase dispersive liquid–liquid microextraction based on solidification of floating organic droplet combined with ion‐pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid‐phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0–100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10–100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements.  相似文献   

18.
A simple, environmentally friendly, and efficient method, based on hollow‐fiber‐supported liquid membrane microextraction, followed by high‐performance liquid chromatography has been developed for the extraction and determination of amlodipine (AML) and atorvastatin (ATO) in water and urine samples. The AML in two‐phase hollow‐fiber liquid microextraction is extracted from 24.0 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the ATO in three‐phase hollow‐fiber liquid microextraction is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into the high‐performance liquid chromatograph for analysis. The preconcentration factors in a range of 34–135 were obtained under the optimum conditions. The calibration curves were linear (R2 ≥ 0.990) in the concentration range of 2.0–200 μg/L for AML and 5.0–200 μg/L for ATO. The limits of detection for AML and ATO were 0.5 and 2.0 μg/L, respectively. Tap water and human urine samples were successfully analyzed for the existence of AML and ATO using the proposed methods.  相似文献   

19.
A rapid and sensitive analytical method has been developed for trace analysis of methyl tert‐butyl ether (MTBE) in water samples using dispersive liquid‐liquid microextraction and gas chromatography with flame ionization detection. Factors relevant to the microextraction efficiency, such as the kind of extraction solvent, the disperser solvent and their volumes, the effect of salt, sample solution temperature and the extraction time were investigated and optimized. Under the optimal conditions the linear dynamic range of MTBE was from 0.2 to 25.0 μg L?1 with a correlation coefficient of 0.9981 and a detection limit of 0.1 μg L?1. The relative standard deviation (RSD%) was less than 5.1% (n = 3) and the recovery values were in the range of 97.8 ± 0.9%. Finally, the proposed method was successfully applied for the analysis of MTBE in aqueous samples.  相似文献   

20.
An ultrasound‐enhanced in situ solvent formation microextraction has been developed first time and compared with ultrasound‐enhanced ionic‐liquid‐assisted dispersive liquid–liquid microextraction for the HPLC analysis of acaricides in environmental water samples. A ionic liquid ([C8MIM][PF6]) was used as the green extraction solvent through two pathways. The experimental parameters, such as the type and volume of both of the extraction solvent disperser solvent, ultrasonication time, and salt addition, were investigated and optimized. The analytical performance using the optimized conditions proved the feasibility of the developed methods for the quantitation of trace levels of acaricides by obtaining limits of detection that range from 0.54 to 3.68 μg/L. The in situ solvent formation microextraction method possesses more positive characteristics than the ionic‐liquid‐assisted dispersive liquid–liquid microextraction method (except for spirodiclofen determination) when comparing the validation parameters. Both methods were successfully applied to determining acaricides in real water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号