首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A fiber‐coated polypyrrole–montmorillonite nanocomposite was prepared for solid‐phase microextraction. The fiber coating can be prepared easily; it is mechanically stable and exhibits relatively high thermal stability. The prepared fiber was evaluated for the extraction of some phenolic compounds from aqueous sample solutions by gas chromatography–mass spectrometry. The effects of the extraction and desorption parameters including extraction time, extraction temperature, stirring rate, ionic strength, pH and desorption temperature and time have been studied. At optimum conditions, the repeatability for one fiber (n = 5), expressed as % relative standard deviation was between 6.5 and 7.8% for the phenolic compounds. The detection limits for the studied phenolic compounds were between 0.05–1.3 ng/mL. The developed method offers the advantage of being simple to use, with shorter analysis time, lower cost, thermal stability of the fibers, and high relative recovery in comparison to conventional methods of analysis.  相似文献   

2.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

3.
To prevent the stripping of coating sorbents in headspace solid‐phase microextraction, a porous extraction probe with packed sorbent was introduced by using a porous stainless steel needle tube and homemade sol–gel sorbents. The traditional stainless‐steel needle tube was punched by a laser to obtain two rows of holes, which supply a passageway for analyte vapor during extraction and desorption. The sorbent was prepared by a traditional sol–gel method with both poly(ethylene glycol) and hydroxy‐terminated silicone oil as coating ingredients. Eight polycyclic aromatic hydrocarbons and six benzene series compounds were used as illustrative semi‐volatile and volatile organic compounds in sequence to verify the extraction performance of this porous headspace solid‐phase microextraction probe. It was found that the analysis method combining a headspace solid‐phase microextraction probe and gas chromatography with mass spectrometry yielded determination coefficients of no less than 0.985 and relative standard deviations of 4.3–12.4%. The porous headspace solid‐phase microextraction probe showed no decrease of extraction ability after 200 uses. These results demonstrate that the packed extraction probe with porous structure can be used for headspace solid‐phase microextraction. This novel design may overcome both the stripping and breakage problems of the conventional coating fiber.  相似文献   

4.
We describe the synthesis of a layered zinc hydroxide‐dodecyl sulfate organic–inorganic hybrid nanocomposite as a new solid‐phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide‐dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69–3.2 ng/L and 10–500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o‐, p‐, and m‐xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2–7.3% and 4.2–11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.  相似文献   

5.
A novel solid phase microextraction fiber was prepared for the first time by using a sol–gel technique with hydroxypropyl‐β‐cyclodextrin‐functionalized reduced graphene oxide as the fiber coating material. The results verified that the β‐cyclodextrin was successfully grafted onto the surface of reduced graphene oxide and the coating possessed a uniform folded and wrinkled structure. The performance of the solid phase microextraction fiber was evaluated by using it to extract nine volatile aromatic compounds from water samples before determination with gas chromatography and flame ionization detection. Some important experimental parameters that could affect the extraction efficiency such as the extraction time, extraction temperature, desorption temperature, desorption time, the volume of water sample solution, stirring rate, as well as ionic strength were optimized. The new method was validated to be effective for the trace analysis of some volatile aromatic compounds, with the limits of detection ranging from 2.0 to 8.0 ng/L. Single fiber repeatability and fiber‐to‐fiber reproducibility were in the range of 2.5–9.4 and 5.4–12.9%, respectively. The developed method was successfully applied to the analysis of three different water samples, and the recoveries of the method were in the range from 77.9 to 113.6% at spiking levels of 10, 100, and 1000 ng/L, respectively.  相似文献   

6.
A novel solid‐phase microextraction Arrow was used to separate volatile organic compounds from soy sauce, and the results were verified by using gas chromatography with mass spectrometry. Solid‐phase microextraction Arrow was optimized in terms of three extraction conditions: type of fiber used (polydimethylsiloxane, polyacrylate, carbon wide range/polydimethylsiloxane, and divinylbenzene/polydimethylsiloxane), extraction temperature (40, 50, and 60°C), and extraction time (10, 30, and 60 min). The optimal solid‐phase microextraction Arrow conditions were as follows: type of fiber = polyacrylate, extraction time = 60 min, and extraction temperature = 50°C. Under the optimized conditions, the solid‐phase microextraction Arrow was compared with conventional solid‐phase microextraction to determine extraction yields. The solid‐phase microextraction Arrow yielded 6–42‐fold higher levels than in solid‐phase microextraction for all 21 volatile organic compounds detected in soy sauce due to the larger sorption phase volume. The findings of this study can provide practical guidelines for solid‐phase microextraction Arrow applications in food matrixes by providing analytical methods for volatile organic compounds.  相似文献   

7.
A novel palladium solid‐phase microextraction coating was fabricated on a stainless‐steel wire by a simple in situ oxidation–reduction process. The palladium coating exhibited a rough microscaled surface and its thickness was about 2 μm. Preparation conditions (reaction time and concentration of palladium chloride and hydrochloric acid) were optimized in detail to achieve sufficient extraction efficiency. Extraction properties of the fiber were investigated by direct immersion solid‐phase microextraction of several polycyclic aromatic hydrocarbons and phthalate esters in aqueous samples. The extracted analytes were transferred into a gas chromatography system by thermal desorption. The effect of extraction and desorption conditions on extraction efficiency were investigated. Under the optimum conditions, good linearity was obtained and correlation coefficients between 0.9908 and 0.9990 were obtained. Limits of detection were 0.05–0.10 μg/L for polycyclic aromatic hydrocarbons and 0.3 μg/L for phthalate esters. Their recoveries for real aqueous samples were in the range from 97.1 to 121% and from 89.1 to 108%, respectively. The intra‐ and interday tests were also investigated with three different addition levels, and satisfactory results were also obtained.  相似文献   

8.
In this work, a facile and environmentally friendly solid‐phase microextraction assay based on on‐fiber derivatization coupled with gas chromatography and mass spectrometry was developed for determining four nonvolatile index biogenic amines (putrescine, cadaverine, histamine, and tyramine) in fish samples. In the assay, the fiber was firstly dipped into a solution with isobutyl chloroformate as derivatization reagent and isooctane as extraction solvent. Thus, a thin organic liquid membrane coating was developed. Then the modified fiber was immersed into sample solution to extract four important bioamines. Afterwards, the fiber was directly inserted into gas chromatography injection port for thermal desorption. 1,7‐Diaminoheptane was employed as internal standard reagent for quantification of the targets. The limits of detection of the method were 2.98–45.3 μg/kg. The proposed method was successfully applied to the detection of bioamines in several fish samples with recoveries ranging 78.9–110%. The organic reagent used for extraction was as few as microliter that can greatly reduce the harm to manipulator and environment. Moreover, the extraction procedures were very simple without concentration and elution procedures, which can greatly simplify the pretreatment process. The assay can be extended to the in situ screening of other pollutant in food safety by changing the derivatization reagent.  相似文献   

9.
In this study, a novel technique is proposed for preparation of an efficient and unbreakable metal‐wire‐supported solid‐phase microextraction fiber. A sol–gel film was deposited on electrophoretically deposited carbon nanotubes on a stainless‐steel wire. The applicability of the fiber was evaluated through the extraction of some aromatic pollutants as model compounds from the headspace of aqueous samples in combination with gas chromatography and mass spectrometry. The parameters affecting the structure and extraction efficiency of the fiber (including the type of solvent, time, and potential for electrophoretic deposition) and the parameters affecting the extraction efficiency (such as coating type, salt content, extraction temperature, and time) were investigated. The results showed that the film thickness will be increased by increasing the potential and time duration. Finally, the characterization of the deposited film was accomplished by scanning electron microscopy and thermogravimetric analysis. After the optimization of the extraction parameters, the limit of detection of less than 20 pg/mL was achieved, and the calibration curves were all linear (r 2 ≥ 0.9737), in the range from 50 to 500 pg/mL. The solid‐phase microextraction fiber has a high mechanical strength; good stability and long service life, making it potentially applicable in the extraction of trace polycyclic aromatic hydrocarbons from aqueous samples.  相似文献   

10.
A high‐performance metal oxide polymer magnetite/polyethylene glycol nanocomposite was prepared and coated in situ on the surface of the optical fiber by sol–gel technology. The magnetite nanoparticles as nanofillers were synthesized by a coprecipitation method and bonded with polyethylene glycol as a polymer. The chemically bonded coating was evaluated for the headspace solid–phase microextraction of some environmentally important volatile organic compounds from aqueous samples in combination with gas chromatography and mass spectrometry. The prepared fiber was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The mass ratio of nanofiller and polymer on the coating extraction efficiency, morphology, and stability were investigated. The parameters affecting the extraction efficiency, including the extraction time and temperature, the ionic strength, desorption temperature, and time were optimized. The sol–gelized fiber showed excellent chemical stability and longer lifespan. It also exhibited high extraction efficiency compared to the two types of commercial fibers. For volatile organic compounds analysis, the new fiber showed low detection limits (0.008–0.063 ng/L) and wide linearity (0.001–450 × 104 ng/L) under the optimized conditions. The repeatability (interday and intraday) and reproducibility were 4.13–10.08 and 5.98–11.61%, and 7.35–14.79%, respectively (n = 5). For real sample analysis, three types of water samples (ground, surface, and tap water) were studied.  相似文献   

11.
A novel graphene oxide decorated with silver nanoparticles coating on a stainless‐steel fiber for solid‐phase microextraction was prepared. Scanning electron microscopy and X‐ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid‐phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4–116.3% with relative standard deviations less than 16.2%.  相似文献   

12.
A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless‐steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid‐phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid‐phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett–Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid‐phase microextraction.  相似文献   

13.
We report the electrochemical fabrication of a poly(2,2‐bithiophene‐co‐3‐methylthiophene)‐graphene composite coating and its application in the headspace solid‐phase microextraction and gas chromatography determination of benzenes (i.e., bromobenzene, 4‐bromotoluene, 2‐nitrotoluene, 3‐nitrotoluene and 1,2,4‐trichlorobenzene). The coating was uniform and showed cauliflower‐like microstructure. It had high thermal stability (up to 375°C) and could be used for at least 180 times of solid‐phase microextraction without a decrease in extraction performance. Furthermore, it presented high extraction capacity for the benzenes due to the hydrophobic effect and π–π interaction between the analytes and the coating. Under optimized extraction conditions, good linearity (correlation coefficients higher than 0.9946), wide linear range (0.01–50 μg/L), and low limits of detection (5.25–12.5 ng/L) were achieved for these analytes. The relative standard deviation was lower than 5.7% for five successive measurements with one fiber, and the relative standard deviation for fiber‐to‐fiber was 4.9–6.8% (n = 5). The solid‐phase microextraction and gas chromatography method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.6–106% for nail polish, 85.8–110% for hair dye, and 90–106.2% for correction fluid, respectively.  相似文献   

14.
Today, wide variety of adsorbents have been developed for sample pretreatment to concentrate and separate harmful substances. However, only a few solid phase microextraction Arrow adsorbents are commercially available. In this study, we developed a new solid phase microextraction Arrow coating, in which nanosheets layered double hydroxides and poly(vinylpyrrolidone) were utilized as the extraction phase and poly(vinyl chloride) as the adhesive. This new coating entailed higher extraction capacity for several volatile organic compounds (allyl methyl sulfide, methyl propyl sulfide, 3‐pentanone, 2‐butanone, and methyl isobutyl ketone) compared to the commercial Carboxen 1000/polydimethylsiloxane coating. Fabrication parameters for the coating were optimized and extraction and desorption conditions were investigated. The validation of the new solid phase microextraction Arrow coating was accomplished using water sample spiked with volatile organic compounds. Under the optimal conditions, the limits of quantification for the five volatile organic compounds by the new solid phase microextraction Arrow coating and developed gas chromatography with mass spectrometry method were in the range of 0.2‐4.6 ng/mL. The proposed method was briefly applied for enrichment of volatile organic compounds in sludge.  相似文献   

15.
The aim of this study was to synthesize a highly efficient organic–inorganic nanocomposite. In this research, the carbon nanotube/magnetite/polyaniline nanocomposite was successfully prepared through a facile route. Monodisperse magnetite nanospheres were prepared through the coprecipitation route, and polyaniline nanolayer as a modified shell with a high surface area was synthesized by an in situ growth route and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy. The prepared nanocomposite was immobilized on a stainless‐steel wire for the fabrication of the solid‐phase microextraction fiber. The combination of headspace solid‐phase microextraction using carbon nanotube/magnetite/polyaniline nanocomposite fiber with gas chromatography and mass spectrometry can achieve a low limit of detection and can be applied to determine phenolic compounds in water samples. The effects of the extraction and desorption parameters including extraction temperature and time, ionic strength, stirring rate, pH, and desorption temperature and time have been studied. Under the optimum conditions, the dynamic linear range was 0.01–500 ng/mL and the limits of detection of phenol, 4‐chlorophenol, 2,6‐dichlorophenol, and 2,4,6‐trichlorophenol were the lowest (0.008 ng/mL) for three times. The coefficient of determination of all calibration curves was more than 0.990.  相似文献   

16.
A new robust method of electromembrane‐surrounded solid‐phase microextraction coupled to ion mobility mass spectrometry was applied for nonsteroidal anti‐inflammatory drugs determination in complex matrices. This is the first time that a graphene/polyaniline composite coating is applied in electromembrane‐surrounded solid‐phase microextraction method. The homemade graphene/polyaniline composite is characterized by a high electrical conductivity and thermal stability. The variables affecting electromembrane‐surrounded solid‐phase microextraction, including extraction time; applied voltage and pH were optimized through chemometric methods, central composite design, and response surface methodology. Under the optimized conditions, limits of detection of 0.04 and 0.05 ng/mL were obtained for mefenamic acid and ibuprofen, respectively. The feasibility of electromembrane‐surrounded solid‐phase microextraction followed by ion mobility mass spectrometry was successfully confirmed by the extraction and determination of low levels of ibuprofen and mefenamic acid in human urine and plasma samples and satisfactory results were obtained.  相似文献   

17.
We have investigated the feasibility of bamboo charcoal@iron oxide black for the headspace solid‐phase microextraction of polychlorinated biphenyls in environmental water samples. Bamboo charcoal@iron oxide black was prepared and used as a solid‐phase microextraction coating material, and gas chromatography with tandem mass spectrometry was used for detection. Several important factors affecting the extraction efficiency were systematically investigated and optimized. Under the optimum conditions, the experimental data exhibited wide linear range over the range 0.2–1000 ng/L and low limits of detection in the range of 4.7–22.2 pg/L. The novel coating was successfully used for the enrichment and determination of polychlorinated biphenyls in real environmental water samples. All these results indicated that bamboo charcoal@iron oxide black‐based headspace solid‐phase microextraction coupled to gas chromatography with tandem mass spectrometry was an excellent alternative for the sensitive analysis of polychlorinated biphenyls at ultratrace levels in the environment.  相似文献   

18.
A new fiber based on titania‐chitin sol‐gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250°C) was obtained. The proposed headspace solid‐phase microextraction‐GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.  相似文献   

19.
A solid‐phase microextraction fiber was prepared by mixing graphene oxide and hydroxyl‐terminated polydimethylsiloxane together and then coating the mixture on the surface of etched stainless‐steel wire by sol–gel technology. After aging by heating, the graphene oxide‐polydimethylsiloxane composite coated fiber was used for the direct solid phase microextraction of triazole fungicides from water samples. The properties of the graphene oxide‐polydimethylsiloxane coating were characterized by transmission electron microscopy and thermogravimetric analysis. And the chemical stability of the coating was tested as well. Several important experimental parameters that could influence the extraction efficiency such as desorption temperature and time, extraction temperature and time, sample pH and stirring rate, were investigated and optimized. Under the optimized conditions, the limits of detection were in the range from 0.01 to 0.03 μg/L. The results indicated that the homemade fiber had the advantages of good thermal and chemical stability and high extraction efficiency, which was successfully applied to the analysis of triazoles in water samples.  相似文献   

20.
A fast gas chromatography/mass spectrometry method was developed and validated for the analysis of the potential endocrine disrupters octinoxate and oxybenzone in swimming pool water samples based on the solvent‐free solid‐phase microextraction technique. The low‐pressure gas chromatography/mass spectrometry method used for the fast identification of UV filter substances was compared to a conventional method in terms of sensitivity and speed. The fast method proposed resulted in 2 min runs, leading to an eightfold decrease in the total analysis time and a sevenfold improvement in detection limits. The main parameters affecting the solid‐phase microextraction process were also studied in detail and the optimized conditions were as follows: fiber coating, polyacrylate; extraction mode, direct immersion; extraction temperature, 25°C; sample volume, 5 mL; extraction time 45 min; pH 6.5. Under the optimized conditions, a linear response was obtained in the concentration range of 0.5–25 μg/L with correlation coefficients in the range 0.990–0.999. The limits of detection were 0.17–0.29 μg/L, and the recoveries were 80–83%. Combined method uncertainty was assessed and found to be less than 7% for both analytes for concentrations equal to or higher than 5 μg/L. Pool water samples were analyzed to demonstrate the applicability of the proposed method. Neither octinoxate nor oxybenzone were detected in the swimming pool water samples at concentrations above the respective limits of detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号