首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
刘莹  何宏平  吴德礼  张亚雷 《化学进展》2016,28(7):1112-1120
臭氧催化氧化作为高级氧化技术是目前水处理领域研究的热点,其中非均相臭氧催化氧化技术因其氧化能力强、降低臭氧投加量特别是能显著提高有机物矿化率等优点而备受关注。非均相催化臭氧氧化领域不断研究新的催化剂,但是其反应过程及机制更加复杂。催化臭氧氧化的性能很大程度上取决于催化剂及其表面性质。污染物在催化剂表面形成络合物,或者臭氧在催化剂表面分解产生不同的含氧物种如表面氧原子、过氧化物和羟基自由基等。本文评述了非均相臭氧催化氧化反应中存在的多种机理,主要是自由基理论、氧空位理论、表面原子氧理论、表面络合物理论和臭氧直接氧化理论。催化剂表面的羟基基团是主要的催化活性中心,本文探讨了表面羟基基团催化反应机制,得出催化剂表面性质决定其表面活性位点的特性及含量,对诱导臭氧分解产生含氧活性物种起了关键作用;概述了催化剂改性后的结构形态、比表面积及其性能和作用机制;并讨论了非均相臭氧催化氧化反应催化剂未来的发展趋势,为催化臭氧氧化污水处理技术提供了理论参考。  相似文献   

2.
臭氧催化氧化脱除低浓度甲醛的新方法   总被引:1,自引:0,他引:1  
甲醛作为一种典型的室内挥发性有机污染物,对人体健康危害很大.目前,在可用于室内甲醛脱除的诸多方法之中,臭氧催化氧化法因可于室温下使用廉价的金属氧化物催化剂实现对甲醛的高效脱除,从而受到了科研工作者的广泛关注.然而,考虑到室内甲醛的浓度极低,且存在着长期缓慢释放的特点,传统的臭氧催化氧化法应用于实际的室内甲醛脱除不仅会造成能量的浪费,而且还易因未完全分解臭氧的连续释放带来二次污染问题.为了提高臭氧催化氧化脱除甲醛过程的臭氧利用率,降低能耗,并有效缓解未分解臭氧引起的二次污染,本文将一种循环的甲醛存储-臭氧催化氧化新方法应用于室内低浓度甲醛的脱除.该新方法包含甲醛存储与臭氧催化氧化两个过程,在存储阶段低浓度甲醛吸附存储于催化剂表面,而在臭氧催化氧化阶段臭氧将存储的甲醛氧化为CO2与H2O,并重新释放催化剂表面的吸附位.因负载型氧化锰具有优良的臭氧分解能力,本研究以Al2O3负载的MnOx为催化剂,通过研究前驱体及担载量对甲醛脱除反应的影响,筛选出了最优的MnOx/Al2O3催化剂,并对相对湿度的影响规律进行了考察,最后通过低浓度甲醛存储-臭氧催化氧化循环实验验证了该甲醛臭氧催化氧化新过程的可靠性.我们采用传统的等体积浸渍法,基于不同的前驱体制备MnOx/Al2O3催化剂.XRD表征结果表明,乙酸锰为前驱体制得的MA/Al2O3催化剂中MnOx相主要为Mn3O4(粒径约为6.0 nm);而硝酸锰前驱体所得MN/Al2O3催化剂中则含有MnO2与Mn2O3相,且其MnOx颗粒粒径较大,约为9.5 nm.XPS测试结果表明,MA/Al2O3催化剂含有Mn2+,Mn3+及Mn4+,其中Mn3+与Mn4+的含量分别为75%与12%;而MN/Al2O3催化剂则仅含有Mn3+与Mn4+,含量分别为35%与65%.上述XRD与XPS结果相一致,说明以乙酸锰为前驱体所得催化剂的分散度较高且易形成低氧化态的Mn.甲醛存储-臭氧催化氧化实验结果表明,与Al2O3及MN/Al2O3相比,MA/Al2O3催化剂具有更高的甲醛存储与催化氧化脱除性能.基于MA/Al2O3催化剂,不同Mn负载量下的甲醛存储与臭氧催化氧化实验结果表明,Mn负载量为10 wt%时MA/Al2O3的性能最佳.因而,进一步的实验中我们均选用最优的10 wt%MA/Al2O3为催化剂,其在50%相对湿度下的甲醛存储量为26.9μmol/mL,臭氧催化氧化阶段碳平衡为92%,CO2选择性为100%.相对湿度的影响结果(23℃)则表明,由于水分子与甲醛分子间存在着竞争吸附作用,甲醛存储容量随相对湿度的增加而降低;但因相对湿度增加可建立利于甲醛氧化的新途径,故臭氧催化氧化性能随相对湿度增加而增强.综合考虑,10 wt%MA/Al2O3上甲醛存储-臭氧催化氧化的最优相对湿度为50%.为验证所提出新方法的实用性,我们基于10 wt%MA/Al2O3开展了甲醛存储-臭氧催化氧化的4次循环实验.4次循环实验中的甲醛存储以及臭氧催化氧化处理的规律可基本保持一致.50%相对湿度下,低浓度甲醛(15×10-6)在空速为27000 h-1时的穿透时间为110 min,而在臭氧催化氧化阶段(150×10-6臭氧,空速15000 h-1)仅需约50 min即可实现对存储甲醛的氧化脱除(碳平衡大于92%,CO2选择性100%),表明该新方法较传统的臭氧催化氧化方法臭氧用量可节省60%.  相似文献   

3.
甲醛作为一种典型的室内挥发性有机污染物,对人体健康危害很大.目前,在可用于室内甲醛脱除的诸多方法之中,臭氧催化氧化法因可于室温下使用廉价的金属氧化物催化剂实现对甲醛的高效脱除,从而受到了科研工作者的广泛关注.然而,考虑到室内甲醛的浓度极低,且存在着长期缓慢释放的特点,传统的臭氧催化氧化法应用于实际的室内甲醛脱除不仅会造成能量的浪费,而且还易因未完全分解臭氧的连续释放带来二次污染问题.为了提高臭氧催化氧化脱除甲醛过程的臭氧利用率,降低能耗,并有效缓解未分解臭氧引起的二次污染,本文将一种循环的甲醛存储-臭氧催化氧化新方法应用于室内低浓度甲醛的脱除.该新方法包含甲醛存储与臭氧催化氧化两个过程,在存储阶段低浓度甲醛吸附存储于催化剂表面,而在臭氧催化氧化阶段臭氧将存储的甲醛氧化为CO_2与H_2O,并重新释放催化剂表面的吸附位.因负载型氧化锰具有优良的臭氧分解能力,本研究以Al_2O_3负载的MnO_x为催化剂,通过研究前驱体及担载量对甲醛脱除反应的影响,筛选出了最优的MnO_x/Al_2O_3催化剂,并对相对湿度的影响规律进行了考察,最后通过低浓度甲醛存储-臭氧催化氧化循环实验验证了该甲醛臭氧催化氧化新过程的可靠性.我们采用传统的等体积浸渍法,基于不同的前驱体制备MnO_x/Al_2O_3催化剂.XRD表征结果表明,乙酸锰为前驱体制得的MA/Al_2O_3催化剂中MnO_x相主要为Mn3O4(粒径约为6.0 nm);而硝酸锰前驱体所得MN/Al_2O_3催化剂中则含有MnO2与Mn_2O_3相,且其MnO_x颗粒粒径较大,约为9.5 nm.XPS测试结果表明,MA/Al_2O_3催化剂含有Mn~(2+),Mn~(3+)及Mn~(4+),其中Mn~(3+)与Mn~(4+)的含量分别为75%与12%;而MN/Al_2O_3催化剂则仅含有Mn~(3+)与Mn~(4+),含量分别为35%与65%.上述XRD与XPS结果相一致,说明以乙酸锰为前驱体所得催化剂的分散度较高且易形成低氧化态的Mn.甲醛存储-臭氧催化氧化实验结果表明,与Al_2O_3及MN/Al_2O_3相比,MA/Al_2O_3催化剂具有更高的甲醛存储与催化氧化脱除性能.基于MA/Al_2O_3催化剂,不同Mn负载量下的甲醛存储与臭氧催化氧化实验结果表明,Mn负载量为10 wt%时MA/Al_2O_3的性能最佳.因而,进一步的实验中我们均选用最优的10 wt%MA/Al_2O_3为催化剂,其在50%相对湿度下的甲醛存储量为26.9μmol/mL,臭氧催化氧化阶段碳平衡为92%,CO_2选择性为100%.相对湿度的影响结果(23°C)则表明,由于水分子与甲醛分子间存在着竞争吸附作用,甲醛存储容量随相对湿度的增加而降低;但因相对湿度增加可建立利于甲醛氧化的新途径,故臭氧催化氧化性能随相对湿度增加而增强.综合考虑,10 wt%MA/Al_2O_3上甲醛存储-臭氧催化氧化的最优相对湿度为50%.为验证所提出新方法的实用性,我们基于10 wt%MA/Al_2O_3开展了甲醛存储-臭氧催化氧化的4次循环实验.4次循环实验中的甲醛存储以及臭氧催化氧化处理的规律可基本保持一致.50%相对湿度下,低浓度甲醛(15×10-6)在空速为27000 h-1时的穿透时间为110 min,而在臭氧催化氧化阶段(150×10-6臭氧,空速15000 h-1)仅需约50 min即可实现对存储甲醛的氧化脱除(碳平衡大于92%,CO_2选择性100%),表明该新方法较传统的臭氧催化氧化方法臭氧用量可节省60%.  相似文献   

4.
江焕峰 《有机化学》2008,28(5):935-935
碳—碳叁键的氧化断裂反应是有机合成中的重要反应之一. 一般情况下, 进行炔键断裂反应使用的化学试剂有:高锰酸钾、碱性双氧水、臭氧、四氧化锇和四氧化钌, 而以环境友好的氧气(O2)作为氧化剂的炔键氧化断裂反应却未见报道. 华南理工大学江焕峰等使用O2作为氧化剂, 在Lewis酸的促进下, 实现了钯催化碳—碳叁键的氧化断裂反应. 炔化合物在不同的醇溶液中可以氧化断裂成不同的羧酸酯, 分离收率最高可达90%. 该催化反应体系为钯催化碳—碳叁键的断裂提供了重要的参考.  相似文献   

5.
《有机化学》2008,28(5):935
碳-碳叁键的氧化断裂反应是有机合成中的重要反应之一.一般情况下,进行炔键断裂反应使用的化学试剂有:高锰酸钾、碱性双氧水、臭氧、四氧化锇和四氧化钌,而以环境友好的氧气(O2)作为氧化剂的炔键氧化断裂反应却未见报道.华南理工大学江焕峰等使用O2作为氧化剂,在Lewis酸的促进下,实现了钯催化碳-碳叁键的氧化断裂反应.炔化合物在不同的醇溶液中可以氧化断裂成不同的羧酸酯,分离收率最高可达90%.该催化反应体系为钯催化碳-碳叁键的断裂提供了重要的参考.  相似文献   

6.
Ru-SBA-15的合成、表征及催化活性   总被引:1,自引:0,他引:1  
在酸性条件下直接合成了Ru-SBA-15.经XRD、N2吸附-脱附、TEM表征其保持了高度有序的六方介孔结构,并在用氧气催化氧化环己烷的过程中表现出了优异的催化性能.  相似文献   

7.
具有催化水氧化性能钴配合物的研究,对于探索新型氧化反应、发展可持续清洁能源具有重要意义。本文制备了一种新型(3-((二(吡啶-2-亚甲基)氨基)甲基)(3,5-二甲基-1H-吡咯-2-基)甲酮(m-PDA)配体及其与CoCl2形成的Co(Ⅱ)配合物(Co1),运用IR、UV、NMR、ES-MS等方法表征了配体及配合物的结构。研究了Co1在均相溶液中化学驱动催化水氧化性能,结果表明Co1能催化纯水分解释放氧气,催化活性(TON)达到15.38。循环伏安法研究了配合物催化水氧化的过程,证实配合物Co1具有催化水分解释放氧气的特性,是一种新型非贵金属水氧化的分子催化剂。  相似文献   

8.
通过机械搅拌法制备了乙炔黑/二氧化锰催化剂,并通过XRD、SEM等分析手段对催化剂进行表征分析,结合催化剂对活性艳红X-3B的催化臭氧氧化降解实验探究催化剂的稳定性、重复性以及催化性能。XRD分析表明制备的二氧化锰为ε-MnO_2,结合SEM分析可知乙炔黑嵌入二氧化锰空隙中形成团聚体,BET数据表明催化剂的比表面积为80.828m~2·g~(-1),XPS与红外分析结合催化剂的催化臭氧氧化降解实验得出催化剂具有良好的稳定性与重复性,自由基猝灭实验可知催化剂的加入促进了臭氧氧化过程中·OH和O_2~–·的产生并且也提高了臭氧分子的利用率。  相似文献   

9.
活性炭纤维吸附脱除NO过程中NO氧化路径分析   总被引:1,自引:0,他引:1  
在小型固定床吸附实验台上开展了黏胶基活性炭纤维吸附脱除NO的实验研究。采用H2O2溶液浸渍以及热处理方法对活性炭纤维表面进行修饰,以获得表面孔隙结构接近而含氧官能团含量不同的样品;考察样品在惰性氮气气氛、含氧气氛下吸附脱除NO的效果,以及表面含氧含氮官能团的变化规律。探讨了含氧官能团在NO催化氧化过程中的作用及含氧气氛下O2对于NO转化为NO2的影响,分析了活性炭纤维表面吸附的NO向NO2的主要转化途径。结果表明,在氮气气氛下活性炭纤维表面C-O官能团对吸附态的NO起到氧化作用,吸附态NO被C-O官能团氧化生成-NO2官能团;在含氧气氛下活性炭纤维吸附NO后表面出现-NO2、-NO3官能团,通过长时间实验测定三种样品在含氧气氛下对NO吸附的效果,发现三种样品稳定时催化氧化效果一致,表明含氧官能团对初始NO的物理吸附影响较大,而对整个吸附过程影响较小。吸附在活性炭纤维表面上的NO与环境气氛中的游离态O2发生氧化反应是NO转变为NO2的主要途径。  相似文献   

10.
腈纶废水是一种难降解的有毒有机废水。本文采用Fe2+/UV催化臭氧-曝气生物滤池降解腈纶废水,探讨了臭氧浓度和紫外光辐射强度等影响因素对腈纶废水的COD去除效果的影响,并考察了紫外催化臭氧氧化单元和曝气生物滤池单元对COD去除的协同作用。结果表明,臭氧浓度对COD的去除率影响较大,臭氧浓度下降25%时,臭氧催化氧化和曝气生物滤池单元处理的COD去除率分别下降了12.53%和15.98%。紫外光强度对臭氧催化氧化单元的COD去除率影响较小,但对曝气生物滤池单元影响较大。臭氧催化氧化单元和曝气生物滤池单元COD去除率之比为1∶2,其协同作用使总出水COD值稳定在较低水平。  相似文献   

11.
孙玉刚  崔华  林祥钦 《化学学报》2000,58(9):1151-1155
研究了铂电极的不同预极化处理过程对碱性鲁米诺阳极电致化学发光(ECL)和阳极极化曲线的影响,发现在碱性含氧溶液中预还原处理的铂电极可增强0.22V(vs.SCE)处发光峰强度,且催化产生1.07V(vs.SCE)附近氧气析出过程并伴随产生明显的ECL发光峰;在酸性溶液中预处理电极可抑制这些活性。给出了催化氧气析出的可能作用机理:在碱性溶液中溶解氧还原生成了吸附在铂电极表面的(OH^-)~a~d~s,从而回忆了氧气的析出过程。同时给出了在碱性含氧溶液中预还原的铂电极上两个可能的ECL反应通道:(1)在0.22V鲁米诺阴离子氧化为鲁米诺自由基,然后与溶解氧反应而发光;(2)1.07V处析出的新鲜氧与鲁米诺阴离子反应而发光。  相似文献   

12.
真空紫外光解协同催化氧化(VUV-PCO)工艺作为常温下的一种高效目标物消除方式,具有真空紫外光解(VUV)、光催化(PCO)以及臭氧催化氧化(OZCO)三重功效。由于甲苯毒性强,存在广泛,本文选取甲苯作为雾霾重要前驱体的挥发性有机污染物(VOCs)的目标污染物,采用自制固定床连续流反应器(VUV光解和PCO工艺),通过浸渍法成功制备了介孔P-MnTiO_2催化剂,考察其在VUV-PCO体系降解甲苯性能。本文通过扫描电镜(SEM)、透射电镜(TEM)、紫外可见吸收光谱(UVVis)、X射线衍射光谱(XRD)等表征手段分析催化剂结构特征与活性的构效关系,探究Mn和磷酸改性对复合催化剂的光催化、臭氧催化活性以及吸附性能的影响机制。实验结果表明,磷酸修饰和Mn掺杂改性协同作用能有效提高催化剂臭氧催化活性及光催化性能,实现了臭氧的完全消除的同时,促进甲苯的高效降解。Mn~(3+)掺杂进Ti的晶格提高了TiO_2的吸光性能,同时可以在催化剂表面产生氧空位,增强催化剂对氧气、臭氧等的吸附和转化。适量磷酸修饰则能进一步提高催化剂对O_2、O_3等物种的吸附性能和表面光生电子-空穴分离效率,进一步增强催化剂光催化活性及臭氧催化活性。催化剂优异的性能归因于催化剂介孔结构对污染物的有效吸附、表面氧空位上催化分解O_3生成O(1D),O(3P),·OH及高效光催化反应产生的活性氧物种共同作用。甲苯首先被VUV光解打断,生成大量中间产物后,经光催化和臭氧催化氧化使最终生成的中间产物和剩余甲苯被系统中的活性氧物种进一步氧化降解为CO_2和H_2O。与此同时,出口臭氧彻底消除。  相似文献   

13.
采用酸化法制备了磷钼钒杂多酸H4PMo11VO40.32H2O,并通过IR和XRD等手段进行结构表征;研究磷钼钒杂多酸作为催化剂,以氧气为氧化剂,由2-乙基己醛催化氧化制备2-乙基己酸反应过程,考察了反应温度、氧气浓度、酸浓度及溶剂等因素对反应的影响。结果表明,制备的磷钼钒杂多酸H4PMo11VO40.32H2O为Keggin型结构,能够有效地催化氧气氧化2-乙基己醛制备2-乙基己酸反应;在实验确定的适宜反应条件下,2-乙基己酸的产率达到90%以上。  相似文献   

14.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO2进一步转化为溶解度高的N2O5,传统脱硫石膏浆液即可实现高效吸收N2O5,从而有效提高氮氧化物吸收效率.但由于N2O5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70oC下,O3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N2O5生成的总包反应(2NO+3O3=N2O5+3O2)可以看出,O3/NO摩尔比为1.5时即可实现N2O5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m3,反应温度100oC,O3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO2的浓度分别低于20 mg/m3(Fe-Mn)和50 mg/m3(Ce-Mn),臭氧残留浓度低于25 mg/m3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N2O5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NOx<50 mg/m3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn4+和Mn3+的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N2O5生成效率.  相似文献   

15.
甲醛是一种常见的室内污染气体,可对人类健康产生极大危害.如何高效环保地去除甲醛已成为亟待解决的问题.催化氧化降解法去除甲醛由于其高效、持久、产物清洁环保而被广泛研究.催化氧化法要求催化剂在反应过程中具有良好的氧化还原特性,因此,一般采用拥有多重价态的过渡金属氧化物作为催化剂材料.近年来,钴氧化物由于拥有多种价态且来源广泛,被广泛用于催化领域.目前已有关于钴基氧化物改性方面的研究报道.此外,许多关于钴基氧化物活性机理的研究也开展.这些研究对新催化材料的合成具有十分重要的指导意义.本文通过在空气氛围和氮气氛围中对钴基水滑石进行煅烧,得到了不同的衍生材料.利用氢气程序升温还原、X射线光电子能谱(XPS)、高分辨透射电镜、扫描电镜、比表面分析及拉曼光谱等表征手段发现,在氮气氛围中煅烧的材料,其表面含有更多的八配位二价钴以及表面活性氧物种,更有利于在反应过程中氧化甲醛分子,并更容易解离空气中的氧气分子.此外,还利用原位红外光谱对反应过程进行了表征,由氮气煅烧得到的钴基材料在甲醛催化降解过程中遵循M-K机理,甲醛分子首先由表面活性氧物种(O_2~–,O~–)氧化为中间体亚甲二氧基(DOM),之后该中间体转化为甲酸盐物种,后者进一步分解生成最终产物H_2O和CO_2.在该过程中,甲酸盐分解为控速步骤.根据XPS和拉曼光谱的结果,氮气煅烧材料比空气煅烧材料含有更多的二价钴,且在甲醛催化降解实验中,氮气煅烧材料表现出更好的转化能力.二价钴通常被认为是惰性的,并不具备催化氧化甲醛的活性.然而在本体系中,氮气煅烧材料表面含有一种八配位的二价钴,该配位环境与传统的活性三价钴的配位环境相同.此外,该二价钴拥有更高的表面能且更容易与氧气接触.另一方面,氮气煅烧材料表面含有更多的表面活性氧物种,能够提高材料的氧化还原能力.因此我们推测,在本文体系中,氮气煅烧材料能够拥有更好的活性主要是由于存在Co~(2+)-O~–-Co~(3+)和Co~(2+)-O_2~–-Co~(3+)这两种成分.在利用原位红外表征手段对反应中间过程进行探究时,为了证明氧的重要作用,我们分别向催化剂表面通入甲醛+氮气和甲醛+氧气+氮气两种气流.结果显示,在有氧气参与的过程中,主要产物为甲酸盐和碳酸盐,而在没有氧气参与的过程中,在催化剂表面观察到DOM、碳酸盐、甲酸盐和甲醛的吸附峰.这说明有氧气参与时催化剂能够快速地将甲醛氧化,而在不通入氧气的情况下,DOM先快速生成,之后有甲酸盐生成.这说明氧气将甲醛先氧化为DOM,再进一步转化为甲酸盐.甲酸盐的分解较慢,不断累积,导致在氧气充足的情况下,依旧可以观察到材料表面大量的甲酸盐.因此,甲酸盐的分解为该体系的控速步骤.  相似文献   

16.
构建了一个可用于催化氧气氧化苄醇类醇到醛的新型催化体系(溴化铜/四甲基哌啶氧化物/哌啶).该体系以乙腈为溶剂,可以在50℃下高活性和选择性地催化氧气将含不同取代基的苄醇氧化为相应的醛.然而,该体系对于仲醇、脂肪族伯醇以及烯丙醇类型醇的氧化没有催化活性.  相似文献   

17.
研究了在鼓泡反应器中,臭氧氧化优尼素红B-B模拟染料废水在10~70℃范围内的脱色反应动力学.发现并解释了不同温度下出现的反应速率交叉现象,利用紫外可见分光光度法定量分析染料特征颜色(浓度)变化情况.结果表明,在不同温度下,表观脱色反应动力学都符合一级动力学规律,相关系数都达到了0.95以上.40℃下,反应速率常数为0.011 83 s~(-1),臭氧氧化脱色过程符合y=exp(0.521-0.014x+5.02×10~(-6)x~2)方程.随着温度的升高,臭氧在高温下氧化染料的反应速率小于臭氧的分解速率,低温时臭氧氧化的速率高于臭氧的分解速率,导致高温下氧化速率变慢.在40~50℃时,臭氧氧化优尼素红B-B染料废水脱色率最高,利用紫外可见分光光度法对氧化后废水进行分析,结果表明脱色率达到了99.5%.  相似文献   

18.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO_2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO_2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO_2进一步转化为溶解度高的N_2O_5,传统脱硫石膏浆液即可实现高效吸收N_2O_5,从而有效提高氮氧化物吸收效率.但由于N_2O_5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70 ℃下,O_3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N_2O_5生成的总包反应(2NO+3O_3=N_2O_5+3O_2)可以看出,O_3/NO摩尔比为1.5时即可实现N_2O_5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m~3,反应温度100 ℃,O_3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO_2的浓度分别低于20 mg/m~3(Fe-Mn)和50 mg/m~3(Ce-Mn),臭氧残留浓度低于25 mg/m~3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N_2O_5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NO_x50 mg/m~3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn~(4+)和Mn~(3+)的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N_2O_5生成效率.  相似文献   

19.
具有催化水氧化性能钴配合物的研究,对于探索新型氧化反应、发展可持续清洁能源具有重要意义。本文制备了一种新型(3-((二(吡啶-2-亚甲基)氨基)甲基)(3,5-二甲基-1H-吡咯-2-基)甲酮(m-PDA)配体及其与CoCl2形成的Co(Ⅱ)配合物(Co1),运用IR、UV、NMR、ES-MS等方法表征了配体及配合物的结构。研究了Co1在均相溶液中化学驱动催化水氧化性能,结果表明Co1能催化纯水分解释放氧气,催化活性(TON)达到15.38。循环伏安法研究了配合物催化水氧化的过程,证实配合物Co1具有催化水分解释放氧气的特性, 是一种新型非贵金属水氧化的分子催化剂。  相似文献   

20.
SnO2的表面酸性及其催化臭氧氧化活性的研究   总被引:2,自引:2,他引:0  
以SnO2催化臭氧化降解高浓度糖蜜酒精废水为探针反应,研究SnO2催化臭氧氧化降解糖蜜酒精废水的活性,并采用吸附吡啶的红外光谱研究SnO2及金属氧化物改性的SnO2催化剂表面的酸性.催化剂吸附吡啶的红外光谱表明:吡啶分子在SnO2表面吸附时,形成六元环振动峰1 449 cm-1,说明SnO2表面存在Lewis酸中心.掺入第二组分对SnO2进行酸性调变后,酸类型和酸中心发生了变化.CuO-SnO2催化剂表面仅存在L酸,NiO-SnO2,Fe2O3-SnO2及CoO-SnO2等的表面不仅存在L酸,还存在不同强度的B酸,且Fe2O3-SnO2与CoO-SnO2存在与SnO2不同的第二类L酸.水的存在使得NiO-SnO2,Fe2O3-SnO2及CoO-SnO2催化剂表面的L酸减弱,B酸强度增强;而CuO-SnO2表面出现了弱的B酸.将催化剂的酸类型与催化臭氧氧化活性进行关联,发现B酸的存在是造成催化剂活性降低的一个原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号