首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a new method for collecting and handling saliva samples using an automated analytical microsyringe and microextraction by packed syringe (MEPS). The screening and determination of lidocaine in human saliva samples utilizing MEPS and liquid chromatography–tandem mass spectrometry (LC‐MS/MS) were carried out. An exact volume of saliva could be collected. The MEPS C8‐cartridge could be used for 50 extractions before it was discarded. The extraction recovery was about 60%. The pharmacokinetic curve of lidocaine in saliva using MEPS‐LC‐MS/MS is reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A niobia‐based sol–gel organic–inorganic hybrid sorbent carrying a positively charged C18 ligand (Nb2O5‐C18(+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high‐performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid–base, and van der Waals interactions. To understand relative contributions of various molecular level analyte–sorbent interactions in the extraction process, two other sol–gel niobia sorbents were also created: (a) a purely inorganic sol–gel niobia sorbent (Nb2O5) and (b) an organic–inorganic hybrid sol–gel niobia sorbent carrying an electrically neutral‐bonded octadecyl ligand (Nb2O5‐C18). The extraction efficiency of the created sol–gel niobia sorbent (Nb2O5‐C18 (+ve)) was compared with that of analogously designed and synthesized titania‐based sol–gel sorbent (TiO2‐C18 (+ve)), taking into consideration that titania‐based sorbents present state‐of‐the‐art extraction media for organophosphorus compounds. In capillary microextraction with high‐performance liquid chromatography analysis, Nb2O5‐C18 (+ve) had shown 40–50% higher specific extraction values (a measure of extraction efficiency) over that of TiO2‐C18 (+ve). Compared to TiO2‐C18(+ve), Nb2O5‐C18(+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed‐phase high‐performance liquid chromatography mobile phase.  相似文献   

3.
A simple and rapid method using microextraction by packed sorbent coupled with gas chromatography and mass spectrometry has been developed for the analysis of five phthalates, namely, diethyl phthalate, benzyl‐n‐butyl phthalate, dicyclohexyl phthalate, di‐n‐butyl phthalate, and di‐n‐propyl phthalate, in cold drink and cosmetic samples. The various parameters that influence the microextraction by packed sorbent performance such as extraction cycle (extract–discard), type and amount of solvent, washing solvent, and pH have been studied. The optimal conditions of microextraction using C18 as the packed sorbent were 15 extraction cycles with water as washing solvent and 3 × 10 μL of ethyl acetate as the eluting solvent. Chromatographic separation was also optimized for injection temperature, flow rate, ion source, interface temperature, column temperature gradient and mass spectrometry was evaluated using the scan and selected ion monitoring data acquisition mode. Satisfactory results were obtained in terms of linearity with R2 >0.9992 within the established concentration range. The limit of detection was 0.003–0.015 ng/mL, and the limit of quantification was 0.009–0.049 ng/mL. The recoveries were in the range of 92.35–98.90% for cold drink, 88.23–169.20% for perfume, and 88.90–184.40% for cream. Analysis by microextraction by packed sorbent promises to be a rapid method for the determination of these phthalates in cold drink and cosmetic samples, reducing the amount of sample, solvent, time and cost.  相似文献   

4.
A new method for quantification of 12 nitroaromatic compounds including 2,4,6‐trinitrotoluene, its metabolites and 2,4,6‐trinitrophenyl‐N‐methylnitramine with microextraction by packed sorbent followed by gas chromatography and mass spectrometric detection in environmental and biological samples is developed. The microextraction device employs 4 mg of C18 silica sorbent inserted into a microvolume syringe for sample preparation. Several parameters capable of influencing the microextraction procedure, namely, number of extraction cycles, washing solvent, volume of washing solvent, elution solvent, volume of eluting solvent and pH of matrix, were optimized. The developed method produced satisfactory results with excellent values of coefficient of determination (R2 > 0.9804) within the established calibration range. The extraction yields were satisfactory for all analytes (> 89.32%) for aqueous samples and (> 87.45%) for fluidic biological samples. The limits of detection values lie in the range 14–828 pg/mL.  相似文献   

5.
魏佳楠  秦墨林  杨俊超  杨柳 《色谱》2021,39(3):219-228
微萃取技术是分析化学领域发展迅速,且已经得到广泛应用的样品前处理技术。填充吸附剂微萃取(MEPS)是一种微量固相萃取技术,使用微量的吸附剂填充于微量注射器,通过反复抽推方式使样品多次流经吸附剂以完成样品吸附萃取过程,萃取后的样品可直接用于色谱分析。典型的MEPS萃取设备包括MEPS注射器和MEPS吸附床(BIN)。MEPS优化的主要因素为MEPS处理过程的参数,包括样品流速、样品量与样品萃取循环次数,吸附剂及淋洗、洗脱溶剂的种类和体积,还需要考虑样品基质对MEPS性能的影响和样品残留和重复使用问题。MEPS中最重要的部分是吸附剂,主要有商品化的MEPS吸附剂,包括硅基的Silica、C18、C8等,碳材料的Hypercarb和聚苯乙烯聚合物类的SDVB、HDVB吸附剂等。研究用的吸附剂包括分子印迹材料、限进分子印迹材料、碳基材料、导电聚合物类材料、改性硅基材料及共价-有机骨架材料等。MEPS结合多种分析仪器已经成功应用于从不同基质中提取单一或多种分析物,所涵盖基质包括生物样品(尿液、唾液、血浆或血液)、河流水体或生活污水以及几种食品和饮料。MEPS处理复杂生物基质样品时,通常需要稀释样品、除蛋白质等预处理。MEPS具有需要样品体积小、操作快速等特点,在生物基质样品分析中有望得到更广泛的使用。在环境样品中,该技术可与现场便携仪器联用,未来将有望在现场进行快速检测,并于易分解样品等方面发挥作用。  相似文献   

6.
Several SPE sorbents were investigated for the extraction of a group of chemically diverse isothiocyanates (ITCs). They included bonded silica, carbon‐based, and polymer‐based sorbents with various functional groups. Results showed large differences in the ability of these sorbents to simultaneously extract ITCs from standard solutions. Recovery rates were on average the highest with divinylbenzene (DVB) based polymeric sorbents, especially with a DVB/N‐vinylpyrrolidone copolymer that had recovery rates ranging between 86.7 and 95.6%. These sorbents achieved the most balanced extraction efficiency between aliphatic and aromatic, polar, and nonpolar ITCs. With graphitized carbon, C18‐bonded silica, and amide‐containing sorbent, recovery levels were higher for the two least polar aromatic ITCs (benzyl ITC and phenylethyl ITC), whereas for the polar aliphatic ITCs levels were the lowest. The least retained one, was methyl ITC that is the most polar with recoveries between 0 and 31.5%. The presence of amide groups, especially in a polyamide sorbent, appeared to be particularly unsuitable for the extraction of aliphatic ITCs. A copolymer made up of DVB and N‐vinylpyrrolidone was therefore shown to be the most suited for the extraction of both aliphatic and aromatic ITCs.  相似文献   

7.
A fully automated protocol consisting of microextraction by packed sorbents (MEPS) coupled with large volume injection-in-port-derivatization-gas chromatography–mass spectrometry (LVI-derivatization-GC–MS) was developed to determine endocrine disrupting compounds (EDCs) such as alkylphenols, bisphenol A, and natural and synthetic hormons in river and waste water samples. During method optimization, the extraction parameters as ion strength of the water sample, the MEPS extraction regime, the volume of organic solvent used for the elution/injection step, the type of elution solvents and the selectivity of the sorbents were studied. For optimum in-port-derivatization, 10 μL of the derivatization reagent N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA + 1% TMCS) was used. 17β-Estradiol-molecularly imprinted polymer (MIP) and silica gel (modified with C-18) sorbents were examined for the enrichment of the target analytes from water samples and the obtained results revealed the high selectivity of the MIP material for extraction of substances with estrogen-like structures. Recovery values for most of the analytes ranged from 75 to 109% for the C18 sorbent and from 81 to 103% for the MIP material except for equilin (on C18 with only 57–66% recovery). Precision (n = 4) of the entire analysis protocol ranged between 4% and 22% with both sorbents. Limits of detection (LODs) were at the low ng L−1 level (0.02–87, C18 and 1.3–22, MIP) for the target analytes.  相似文献   

8.
For the analysis of methylhippuric acids (MHAs) in human urine samples, in this study, a new method based on the metal–organic framework (MOF) of MIL-53-NH2 (Al) in microextraction by packed sorbent (MEPS) was developed. The synthesis of MIL-53-NH2 (Al) was characterized by Fourier transform infrared spectra, field emission-scanning electron microscopy and X-ray diffraction. Response surface methodology was used to investigate the influences of several parameters including type and volume of elution, type of conditional solvent, sample volume and extraction cycle on MEPS efficiency. The results showed good recoveries (>94%) and excellent extraction efficiencies (>96%) at three different concentrations of 50, 500 and 1500 μg ml−1 (as low, mid and high concentrations, respectively) of MHA isomers. Calibration curves of MHAs were linear over the concentration range of 1–1500 μg ml−1, with high correlation coefficients (r ≥ 0.998). The reproducibility of the proposed MIL-53-MEPS for determination of three isomers of MHA was found to be in the range of 3.5–11.1%. After optimization of the proposed technique, it was used to analyze MHAs in urine samples of workers exposed to xylenes in a petrochemical plant in Asalouyah, Iran. The results indicated that the MOF–MEPS method was selective, sensitive, rapid and efficient for the extraction of urinary MHAs. The technique is also environmentally friendly and inexpensive, and the MOF sorbent is reusable.  相似文献   

9.
We report on the fabrication of a thin‐film composite for the extraction of bisphenol A from aqueous solutions. Nylon‐6, C18 particles, and polyethylene glycol were used to prepare the thin film sorbent. Bisphenol A was used as a model compound to evaluate the extraction efficiency of the sorbent. High‐performance liquid chromatography with UV detection was used for the analysis. The extraction yield of the sorbent was compared with other thin films fabricated using different sorbents including nanoclay, LiChrolut EN, and multiwalled carbon nanotubes. Experimental parameters affecting the extraction performance (extraction time, desorption condition, sample stirring, and ionic strength of the sample solution) were investigated. The detection limit and the dynamic range of the method were 0.05 and 0.15–50 μg/L, respectively. The relative standard deviation of the method at two concentration levels (0.5 and 20 μg/L) was less than 7.2%. Finally, a polycarbonate baby bottle, river water, and wastewater samples were analyzed by the method.  相似文献   

10.
A method of microextraction by packed sorbent (MEPS) followed by liquid chromatography with diode array detection has been developed and optimized for the extraction of six tricyclic antidepressants (amitriptyline, nortriptyline, imipramine, desipramine, doxepin, nordoxepin) from human serum. The optimal parameters of MEPS extraction (type of sorbent, volume of sample, composition, and volume of washing and elution solutions) for these drugs in spiked samples were defined. The developed MEPS procedure was validated and then successfully applied to the analysis of serum reference material. The limit of detection (0.02–0.05 μg/mL), intraday (2.7–8.8%) and interday (4.4–11.6%) precision (RSD), and the accuracy of the assay (94.5–108.8%) at three concentration levels—0.2, 0.5, and 0.8 μg/mL—were estimated. The accuracy of the method was evaluated by the analysis of certified reference material. Moreover, the validated procedure was compared with the solid-phase extraction technique. Finally, microextraction by packed sorbent was assessed as a suitable tool in forensic and clinical methods for serum sample preparations.  相似文献   

11.
In this study, the application of a novel nanomaterial composite was investigated in two microextraction techniques of solid‐phase microextraction and a needle trap device in a variety of sampling conditions. The optimum sampling temperature and relative humidity were 10°C and 20%, respectively, for both techniques with two sorbents of graphene/silica composite and polydimethyl siloxane. The two microextraction techniques with the proposed sorbent showed recoveries of 95.2 and 94.6% after 7 days. For the needle trap device the optimums desorption time and temperature were 3 min at 290°C and for SPME these measures were 1 and 1.5 min at 240–250°C for the graphene/silica composite and polydimethyl siloxane, respectively. The relative standard division obtained in inter‐ and intra‐day comparative studies were 3.3–14.3 and 5.1–25.4, respectively. For four sample the limit of detection was 0.021–0.25 ng/mL, and the limit of quantitation was 0.08–0.75 ng/mL. The results show that the graphene/silica composite is an appropriate extraction media for both techniques. Combining an appropriate sorbent with microextraction techniques, and using these in conjunction with a sensitive analytical instrument can introduce a strong method for sampling and analysis of occupational and environmental pollutants in air.  相似文献   

12.
Microextraction by packed sorbents (MEPS) combined with Surface-enhanced Raman spectroscopy (SERS) was investigated, and applied to the determination of musk ketone (MK) in river water samples. The full MEPS–SERS method includes analyte enrichment by MEPS preconcentration with C18 sorbent followed by SERS detection supported by silver nanoparticles. An eluent drop containing the analyte is deposited directly from the MEPS syringe on a CaF2 glass plate. When the drop has dried, a specific volume of silver nanoparticles solution is added on it before each SERS measurement. Several experimental variables were studied in depth; under the optimum experimental conditions MK can be extracted from a 500 μL sample with recoveries in the range 47–63 %. The limit of detection was 0.02 mg L?1 and the relative standard deviation 15.2 % (n?=?4). Although not investigated in this work, the proposed method might be suitable for in-situ monitoring, because of the portability of the Raman spectrometer used.
Figure
Experimental scheme of the MEPS-SERS method proposed for the determination of musk ketone in river water  相似文献   

13.
The application of graphene‐based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene‐based material, their properties, synthesis routes, and the most important applications in both off‐line and on‐line sample preparation techniques. The discussion of the off‐line approaches includes methods derived from conventional solid‐phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on‐line approaches focus on the use of graphene‐based material mainly in on‐line solid phase extraction, its variation called in‐tube solid‐phase microextraction, and on‐line microdialysis systems.  相似文献   

14.
An at-line analysis protocol is presented that allows the determination of four UV filters, two polycyclic musk compounds and caffeine in water at concentration level of ng L−1. The fully automated method includes analytes enrichment by Microextraction by packed sorbent (MEPS) coupled directly to large volume injection-gas chromatography–mass spectrometry. Two common SPE phases, C8 and C18, were examined for their suitability to extract the target substances by MEPS. The analytes were extracted from small sample volumes of 800 μL with recoveries ranging from 46 to 114% for the C8-sorbent and 65–109% for the C18-sorbent. Limits of detection between 34 and 96 ng L−1 enable the determination of the analytes at common environmental concentration levels. Both sorbents showed linear calibration curves for most of the analytes up to a concentration level of 20 ng mL−1. Carryover was minimized by washing the sorbents 10 times with 100 μL methanol. After this thorough cleaning, the MEPS are re-used and up to 70 analyses can be performed with the same sorbent. The fully automated microextraction GC–MS protocol was evaluated for the influence of matrix substances typical for wastewater. Dilution of samples prior to MEPS is recommended when the polar caffeine is present at high concentration. Real water samples were analyzed by the MEPS-GC–MS method and compared to standard SPE.  相似文献   

15.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

16.
This work presents a new methodology to quantify ethyl carbamate (EC) in fortified wines. The presented approach combines the microextraction by packed sorbent (MEPS), using a hand-held automated analytical syringe, with one-dimensional gas chromatography coupled with mass spectrometry detection (GC–MS). The performance of different MEPS sorbent materials was tested, namely SIL, C2, C8, C18, and M1. Also, several extraction solvents and the matrix effect were evaluated. Experimental data showed that C8 and dichloromethane were the best sorbent/solvent pair to extract EC. Concerning solvent and sample volumes optimization used in MEPS extraction an experimental design (DoE) was carried out. The best extraction yield was achieved passing 300 μL of sample and 100 μL of dichloromethane. The method validation was performed using a matrix-matched calibration using both sweet and dry fortified wines, to minimize the matrix effect. The proposed methodology presented good linearity (R2 = 0.9999) and high sensitivity, with quite low limits of detection (LOD) and quantification (LOQ), 1.5 μg L−1 and 4.5 μg L−1, respectively. The recoveries varied between 97% and 106%, while the method precision (repeatability and reproducibility) was lower than 7%. The applicability of the methodology was confirmed through the analysis of 16 fortified wines, with values ranging between 7.3 and 206 μg L−1. All chromatograms showed good peak resolution, confirming its selectivity. The developed MEPS/GC–MS methodology arises as an important tool to quantify EC in fortified wines, combining efficiency and effectiveness, with simpler, faster and affordable analytical procedures that provide great sensitivity without using sophisticated and expensive equipment.  相似文献   

17.
An efficient and sensitive analytical method based on molecularly imprinted solid‐phase extraction (MISPE) and reverse‐phase ultrasound‐assisted dispersive liquid–liquid microextraction (USA‐DLLME) coupled with LC–MS/MS detection was developed and validated for the analysis of urinary 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL), a tobacco‐specific nitrosamine metabolite. The extraction performances of NNAL on three different solid‐phase extraction (SPE) sorbents including the hydrophilic‐lipophilic balanced sorbent HLB, the mixed mode cationic MCX sorbent and the molecularly imprinted polymers (MIP) sorbent were evaluated. Experimental results showed that the analyte was well retained with the highest extraction recovery and the optimum purification effect on MIP. Under the optimized conditions of MIP and USA‐DLLME, an enrichment factor of 23 was obtained. Good linearity relationship was obtained in the range of 5‐1200 pg/mL with a correlation coefficient of 0.9953. The limit of detection (LOD) was 0.35 pg/mL. The recoveries at three spiked levels ranged between 88.5% and 93.7%. Intra‐ and inter‐day relative standard deviations varied from 3.6% to 7.4% and from 5.4% to 9.7%, respectively. The developed method combing the advantages of MISPE and DLLME significantly improves the purification and enrichment of the analyte and can be used as an effective approach for the determination of ultra‐trace NNAL in complex biological matrices.  相似文献   

18.
An ultra-fast and improved analytical methodology based on microextraction by packed sorbent (MEPS) combined with ultra-performance LC (UPLC) was developed and validated for determination of (E)-resveratrol in wines. Important factors affecting the performance of MEPS such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles, and sample volume were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (50-250 μL) in one extraction cycle (extract-discard) and in a short time period (about 3 min for the entire sample preparation step). (E)-Resveratrol was eluted by 1×250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a high-strength silica HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, extraction yield, accuracy, and inter/intra-day precision, using a Madeira wine sample (ET) spiked with (E)-resveratrol at concentration levels ranging from 5 to 60 μg/mL. Validation experiments revealed very good recovery rate of 95±5.8% RSD, good linearity with r(2) values >0.999 within the established concentration range, excellent repeatability (0.52%), and reproducibility (1.67%) values (expressed as RSD), thus demonstrating the robustness and accuracy of the MEPS(C8) /UPLC-photodiode array (PDA) method. The LOD of the method was 0.21 μg/mL, whereas the LOQ was 0.68 μg/mL. The validated methodology was applied to 30 commercial wines (24 red wines and six white wines) from different grape varieties, vintages, and regions. On the basis of the analytical validation, the MEPS(C8)/UPLC-PDA methodology shows to be an improved, sensitive, and ultra-fast approach for determination of (E)-resveratrol in wines with high resolving power within 6 min.  相似文献   

19.
To prevent the stripping of coating sorbents in headspace solid‐phase microextraction, a porous extraction probe with packed sorbent was introduced by using a porous stainless steel needle tube and homemade sol–gel sorbents. The traditional stainless‐steel needle tube was punched by a laser to obtain two rows of holes, which supply a passageway for analyte vapor during extraction and desorption. The sorbent was prepared by a traditional sol–gel method with both poly(ethylene glycol) and hydroxy‐terminated silicone oil as coating ingredients. Eight polycyclic aromatic hydrocarbons and six benzene series compounds were used as illustrative semi‐volatile and volatile organic compounds in sequence to verify the extraction performance of this porous headspace solid‐phase microextraction probe. It was found that the analysis method combining a headspace solid‐phase microextraction probe and gas chromatography with mass spectrometry yielded determination coefficients of no less than 0.985 and relative standard deviations of 4.3–12.4%. The porous headspace solid‐phase microextraction probe showed no decrease of extraction ability after 200 uses. These results demonstrate that the packed extraction probe with porous structure can be used for headspace solid‐phase microextraction. This novel design may overcome both the stripping and breakage problems of the conventional coating fiber.  相似文献   

20.
A simple, rapid and environment‐friendly technique of single‐drop liquid‐phase microextraction has been developed for the determination of sulfonamides in environmental water. Several important parameters including stirring rate, extraction solvent, extraction pH, salinity and extraction time were optimized to maximize the extract efficiency. Extraction solvent 1‐octyl‐3‐methylimidazolium hexafluorophosphate [C8MIM][PF6] ionic liquid showed better extraction efficiency than 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4MIM][PF6] and 1‐octanol. The optimum experimental conditions were: pH, 4.5; sodium chloride content, 36% w/v; extraction time, 20 min. This method provided low detection limits (0.5–1 ng/mL), good repeatability (the RSD ranging from 4.2 to 9.9%, n=5) and wide linear range (1–1500 ng/mL), with determination coefficients (r2) higher than 0.9989 for all the target compounds. Real sample analysis showed relative recoveries between 63.5 and 115.8% for all the target compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号