首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
李志坚  程璐  温姣进 《中国物理 B》2010,19(1):10305-010305
We consider a two-qubit system described by the Heisenberg XY model with Dzyaloshinski--Moriya (DM) anisotropic interaction in a perpendicular magnetic field to investigate the relation between entanglement, geometric phase and quantum phase transition (QPT). It is shown that the DM interaction has an effect on the critical boundary. The combination of entanglement and geometric phase may characterize QPT completely. Their jumps mean that the occurrence of QPT and inversely the QPT at the critical point at least corresponds to a jump of one of them.  相似文献   

2.
The thermal quantum discord (QD) is studied in a two-qubit Heisenberg XXZ system with DzyaloshinskiiMoriya (DM) interaction. We compare the thermal QD with thermal entanglement in this system and find remarkable differences between them. For instance, we show situations where QD decreases asymptotically to zero with temperature T while entanglement decreases to zero at the point of critical temperature, situations where QD decreases with certain tunable parameters such as Dx and Dx when entanglement increases. We find that the characteristic of QD is exotic in this system and this possibly offers a potential solution to enhance entanglement of a system. We also show that tunable parameter Dx is more efficient than parameter Dz in most regions for controlling the QD.  相似文献   

3.
This paper investigates the entanglement dynamics of the system, composed of two qubits A and B with Heisenberg XX spin interactation. There is a third controller qubit C, which only has Dzyaloshinskii--Moriya (DM) spin-orbit interaction with the qubit B. It is found that depending on the initial state of the controller qubit C and DM interaction, the entanglement of the system displays amplification and sudden birth effects. These effects indicate that one can control the entanglement of the system, which may be helpful for quantum information processing.  相似文献   

4.
In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with staggered Dzyaloshinskii–Moriya(DM) interaction have been investigated using the quantum renormalization group(QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit comparison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.  相似文献   

5.
徐帅  宋学科  叶柳 《中国物理 B》2014,23(1):10302-010302
In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with stag- gered Dzyaloshinskii-Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit compar- ison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.  相似文献   

6.
颜益营  秦立国  田立君 《中国物理 B》2012,21(10):100304-100304
We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction.In the case of a two-qubit with an initial pure state,quantum correlations decay to zero at the critical point of the environment in a very short time.In the case of a two-qubit with initial mixed state,it is found that quantum discord may get maximized due to the quantum critical behavior of the environment,while entanglement vanishes under the same condition.Besides,we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment.The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases.The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.  相似文献   

7.
We investigate the thermal entanglement in a spin-1/2 Ising–Heisenberg diamond chain, in which the vertical Heisenberg spin dimers alternate with single Ising spins. Due to the fact that the Dzyaloshinskii–Moriya(DM) interaction contributes to unusual and interesting magnetic properties in actual materials, and moreover it plays a significant role in the degree of the entanglement of the Heisenberg quantum spin systems, we focus on the effects of different DM interactions,including D z and Dx, on the thermal entanglement of the Heisenberg spin dimer. The concurrence, as a measure of spin dimer entanglement, is calculated for different values of exchange interactions, DM interaction, external magnetic field,and temperature. It is found that the critical temperature and the critical magnetic field corresponding to the vanishing of entanglement increase with DM interaction, and the entanglement revival region gets larger by increasing DM interaction, thus DM interaction favors the formation of the thermal entanglement. It is observed that different DM interaction parameters(Dz and Dx) have remarkably different influences on the entanglement. Different from the case Dz, there is the non-monotonic variation of the concurrence with temperature in the case Dx, and additionally the DM interaction Dx can induce the entanglement near zero temperature in the case that the antiferromagnetic Ising-type interaction constant is larger than the antiferromagnetic Heisenberg interaction constant. It is also shown that for the same value of DM interaction the critical magnetic field of the case Dx is larger than that of the case Dz.  相似文献   

8.
In this paper we calculate the thermal entanglement and teleportation in a two-qubit Heisenberg XYZ chain with the different Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic fields. The analytical expressions of the concurrence and the average fidelity are obtained for this model. We have shown that the quantum phase transition occurs in the system and the quantum phase transition point depends on the inhomogeneity of magnetic fields. We compare the x-component Dzyaloshinskii-Moriya interaction with the z-component Dzyaloshinskii-Moriya interaction on the effects of quantum teleportation. It is found that we can take Dzyaloshinskii-Moriya interaction as one of the effective control parameters for the teleportation manipulation.  相似文献   

9.
In this paper we calculate the thermal entanglement and teleportation in a two-qubit Heisenberg XYZ chain with the different Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic fields. The analytical expres- sions of the concurrence and the average fidelity are obtained for this model. We have shown that the quantum phase transition occurs in the system and the quantum phase transition point depends on the inhomogeneity of magnetic fields. We compare the x-component Dzyaloshinskii-Moriya interaction with the z-component Dzyaloshinskii-Moriya interaction on the effects of quantum teleportation. It is found that we can take Dzyaloshinskii-Moriya interaction as one of the effective control parameters for the teleportation manipulation.  相似文献   

10.
Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model and the Heisenberg X X Z model in the presence of the Dzyaloshinskii–Moriya interaction are adopted as the research objects. We identify that the tripartite entanglement can signal the critical point. The derivative of tripartite entanglement shows singularity as the spin chain size increases. Furthermore, the intuitive scaling behavior of the system selected is studied and the result allows us to precisely quantify the correlation exponent by utilizing the power law.  相似文献   

11.
The effect of Dzialoshinski-Moriya (DM) interaction on the quantum discord and the thermal entanglement of the density matrix of a spin star model is investigated. Our results imply that the quantum correlation measured by quantum discord and thermal entanglement can be established between two surrounding parties both of which have no interaction with each other but interact with the central party independently. From the analysis, we find that the strong DM interaction can enhance the quantum discord and thermal entanglement while the external magnetic field with a large value and the high temperature can shrink them. Specially, the quantum discord is more robust than the thermal entanglement in the sense that the range of parameters in which the quantum discord takes a zero value is much smaller than that of the thermal entanglement.  相似文献   

12.
We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.  相似文献   

13.
We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.  相似文献   

14.
We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya(DM) interaction. The thermal quantum discord(TQD) and the thermal entanglement(TE)are discussed as two kinds of important methods to measure the quantum correlation, respectively. It is found that DM interaction plays an important role in the thermal quantum correlations of the system. It can enhance the thermal quantum correlations by increasing DM interaction. Furthermore, the thermal quantum correlations can be promoted by tuning the external magnetic field and the Heisenberg coupling parameter in the antiferromagnetic system. It is shown that the behaviors of TQD differ from those of TE. TQD is more robust against decoherence than TE. For the measurement of TQD, the "regrowth" phenomenon occurs in the ferromagnetic system. We also find that the anisotropy favors the thermal quantum correlations of the system with weak DM interaction.  相似文献   

15.
研究了热平衡温度,自旋交换相互作用,Dzyaloshinskii-Moriya(DM)相互作用及外加非一致性磁场对两比特海森堡XYZ自旋链量子系统的热纠缠与局域量子不确定度的影响,对比分析了并发度量子纠缠与局域量子不确定度描述自旋链系统量子关联的差别.结果表明自旋链系统的量子纠缠在热平衡温度,DM相互作用及外加磁场的非一致性参数的变化情况下均会出现纠缠突然死亡的再生现象,而自旋链系统的局域量子不确定度随着这些参数呈连续变化现象.并且,自旋交换相互作用,DM相互作用及外加横向磁场作用强度较小时,他们的变化对自旋链系统的量子纠缠与局域量子不确定度的影响有着明显的差别.  相似文献   

16.
The thermal quantum discord (QD) is studied in a two-qubit Heisenberg XXZ system with Dzyaloshinskii-Moriya (DM) interaction. We compare the thermal QD with thermal entanglement in this system and find remarkable differences between them. For instance, we show situations where QD decreases asymptotically to zero with temperature T while entanglement decreases to zero at the point of critical temperature, situations where QD decreases with certain tunable parameters such as Dz and Dx when entanglement increases. We find that the characteristic of QD is exotic in this system and this possibly offers a potential solution to enhance entanglement of a system. We also show that tunable parameter Dx is more efficient than parameter Dz in most regions for controlling the QD.  相似文献   

17.
We investigate the anisotropic Heisenberg XXZ spin chain that possesses Dzyaloshinskii–Moriya (DM) interaction and discuss the behavior characteristics of the thermal quantum correlation (thermal quantum discord and thermal quantum entanglement) in the inhomogeneous magnetic field that is manipulated by sinusoidal wave. The results indicate that the DM interaction strengthens the thermal correlation such that the stronger the DM interaction is, the more obvious it strengthens. We can control the thermal correlation through externally adding an inhomogeneous magnetic field that a relative stable range can be formed where the thermal quantum correlation is almost foreign to the coupling coefficient of z-direction spin, thereby the thermal quantum correlation is controlled and enhanced.  相似文献   

18.
Taking into account the intrinsic decoherence,we have investigated quantum correlations in a two-qubit Heisenberg XX model when a nonuniform magnetic field is included.We compare entanglement measured by entanglement of formation,quantum discord and measurement-induced measurement(MID)and illustrate their diferent characteristics.Quantum discord and MID show the same features and always exist even though there is no entanglement in the long time limit.In the time evolution,quantum discord could be generated or enhanced to the stable value,while MID just decreases to the stable value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号