首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report efficient generation of tunable femtosecond pulses in the ultraviolet (UV) by intracavity doubling of a visible femtosecond optical parametric oscillator (OPO). The OPO, based on a 400 microm BiB3O6 crystal and pumped at 415 nm in the blue, can provide visible femtosecond signal pulses across 500-710 nm. Using a 500 microm crystal of beta-BaB2O4 internal to the OPO cavity, efficient frequency doubling of the signal pulses into the UV is achieved, providing tunable femtosecond pulses across 250-355 nm with up to 225 mW of average power at 76 MHz. Cross-correlation measurements result in UV pulses with durations down to 132 fs for 180 fs blue pump pulses.  相似文献   

2.
A femtosecond all-fiber laser source incorporating a cw mode-locked Yb-doped silica fiber oscillator and amplifier has been used to synchronously pump an optical parametric oscillator based on periodically poled lithium niobate. The signal output, consisting of 330-fs pulses at a 54-MHz repetition rate and average powers up to 90 mW, was tuned from 1.55 to 1.95microm , with a corresponding idler range of 2.30-3.31microm .  相似文献   

3.
Sun JH  Gale BJ  Reid DT 《Optics letters》2007,32(11):1414-1416
A repetition-rate-stabilized frequency comb ranging from the violet to the mid-infrared (0.4-2.4 microm) is obtained by phase locking a femtosecond Ti:sapphire laser and a synchronously pumped optical parametric oscillator to a common supercontinuum reference. The locking results have bandwidths lower than 3 kHz. By changing the locking frequencies, different relative and absolute offsets of the constituent frequency combs are achievable.  相似文献   

4.
Min CK  Joo T 《Optics letters》2005,30(14):1855-1857
We demonstrate a high-energy near-infrared cavity-dumped femtosecond optical parametric oscillator (OPO) based on periodically poled lithium niobate. The laser generates 90 nJ pulses at a repetition rate of up to 1 MHz when synchronously pumped by 800 mW output from a femtosecond Ti:sapphire laser. The laser is broadly tunable from 1.0 to 1.5 microm in the signal branch, with a pulse duration of < 60 fs at 1.2 microm. High intracavity power is achieved by running the laser in the regime of positive group-velocity dispersion.  相似文献   

5.
Optical waveguide writing with a diode-pumped femtosecond oscillator   总被引:1,自引:0,他引:1  
Optical waveguide writing is demonstrated by means of a diode-pumped cavity-dumped Yb:glass femtosecond laser oscillator with a pulse energy of 270 nJ at a 166-kHz repetition rate. Waveguides realized on an Er:Yb-doped phosphate glass are almost perfectly mode matched to standard single-mode fibers at 1.55 microm and show a 1.2-dB net gain in a standard telecommunications amplifier setup. Waveguide writing with a compact femtosecond laser oscillator is an important step toward introducing this technique into an industrial context.  相似文献   

6.
Continuous mode-locked operation of a singly resonant, synchronously pumped optical parametric oscillator (SPOPO) based on CdSe has produced idler output tuned over the range of 9.1-9.7 microm, the longest wavelength generated so far to our knowledge from a SPOPO. Average idler powers as high as approximately 70 mW are generated in the crystal. Tandem pumping with a diffraction-grating-tuned parametric oscillator in periodically poled lithium niobate provides a convenient and agile means of tuning the noncritically phase-matched CdSe device. The absence of any detrimental thermal effects in the CdSe crystal suggests that significant further power scaling should be possible, with idler tuning ranges extendable to cover 8-12 microm.  相似文献   

7.
报道了利用零色散在780nm处的光子晶体光纤与纳焦耳量级的飞秒激光脉冲相互作用的实验结果.实验使用35fs,中心波长810—840nm,单脉冲能量可达14nJ的飞秒激光光源获得了超过一个倍频程的平坦超连续光谱(500—1100nm).在不同功率、不同中心波长、不同啁啾和有无直流成分的多种飞秒脉冲激光的条件下,研究了超连续光谱的产生情况.并对一系列现象进行了对比,分析了超连续光谱产生的机制. 关键词: 光子晶体光纤 飞秒脉冲激光 超连续光谱  相似文献   

8.
We present results from what we believe is the first reported example of an optical parametric oscillator based on periodically poled RbTiOAsO(4). The oscillator is pumped by a femtosecond self-mode-locked Ti:sapphire laser and, with a single-grating 2-mm-long crystal and one mirror set, a combination of pump and cavity-length tuning provided wavelength coverage from 1060 to 1225nm (signal) and 2.67 to 4.5 microm (idler). Average output powers were as much as 120mW in the signal and 105mW in the idler and interferometric autocorrelations recorded at signal and idler wavelengths of 1.1 and 3.26 microm, respectively, imply pulse durations of 125 and 115fs, respectively.  相似文献   

9.
We describe configurations of a novel synchronously pumped femtosecond optical parametric oscillator based on the crystal RbTiOAsO(4) and operating with a signal-pulse-repetition frequency as high as 344 MHz. Average signal powers as high as 600 mW and pulse durations of 78 fs are demonstrated at a wavelength of 1.25 microm, and a characterization of the signal output using frequency-resolved optical gating implies asymmetric near-sech(2)(t) intensity-profile pulses with significant amounts of spectral cubic phase.  相似文献   

10.
We have demonstrated what we believe to be the first mid-infrared optical parametric oscillator (OPO) pumped directly by a pulsed Tm-doped fiber laser. The Tm-fiber pump laser produces 30 ns pulses with a repetition rate of 30 kHz at a wavelength of 2 microm. The ZnGeP2 (ZGP) OPO produces 20 ns mid-IR pulses in the 3.4-3.9 microm and 4.1-4.7 microm spectral regions simultaneously. More than 658 mW of mid-IR output power has been generated with a total OPO slope efficiency greater than 35%.  相似文献   

11.
We present a photonic crystal fiber (PCF)-based light source for generating tunable excitation pulses (pump and Stokes) that are applicable to coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The laser employed is an unamplified Ti:sapphire femtosecond laser oscillator. The CARS pump pulse is generated by spectral compression of a laser pulse in a PCF. The Stokes pulse is generated by redshifting a laser pulse in a PCF through the soliton self-frequency shift. This setup allows for probing up to 4000 cm(-1) with a spectral resolution of approximately 25 cm(-1). We characterize the stability and robustness of CARS microspectroscopy employing this light source.  相似文献   

12.
We demonstrate optical clockwork without the need for carrier-envelope phase control by use of sum-frequency generation between a continuous-wave optical parametric oscillator at 3.39 microm and a femtosecond mode-locked Ti:sapphire laser with two strong spectral peaks at 834 and 670 nm, a spectral difference matched by the 3.39-microm radiation.  相似文献   

13.
The output of a long-cavity 2 MHz all-solid-state Nd:YVO(4) picosecond oscillator with nonlinear optical mirror mode locking is used for direct pumping of an optical parametric amplifier seeded with white-light continuum generated in optical fiber by the same laser to generate tunable (5-12 microm) mid-IR radiation.  相似文献   

14.
We report significant enhancement (+24 dB) of the optical beat note between a 657 nm cw laser and the second-harmonic generation of the tailored continuum at 1314 nm generated with a femtosecond Cr:forsterite laser and a nonlinear fiber Bragg grating. The same continuum is used to stabilize the carrier-envelope offset frequency of the Cr:forsterite femtosecond laser and permits improved optical stabilization of the frequency comb from 1.0 to 2.2 microm. Using a common optical reference at 657 nm, a relative fractional frequency instability of 2.0 x 10(-15) is achieved between the repetition rates of Cr:forsterite and Ti:sapphire laser systems in 10 s averaging time. The fractional frequency offset between the optically stabilized frequency combs of the Cr:forsterite and Ti:sapphire lasers is +/-(0.024 +/- 6.1) x 10(-17).  相似文献   

15.
We report a femtosecond optical parametric oscillator (OPO) based on the nonlinear material BiB3O6. The OPO is synchronously pumped in the blue by the second harmonic of a Kerr-lens-mode-locked Ti:sapphire laser. It can provide wide and continuous tuning across the entire green-yellow-orange-red spectral range with a single crystal and a single set of mirrors. Using a 500 microm BiB3O6 crystal and collinear type I (e+e->o) phase matching in the optical yz plane, a signal wavelength range of 480-710 nm is demonstrated with angle tuning at room temperature at average output powers of 270 mW. With 220 fs blue pump pulses, near-transform-limited signal pulses of 120 fs duration have been obtained at 76 MHz repetition rate.  相似文献   

16.
田文龙  王兆华  朱江峰  魏志义 《中国物理 B》2016,25(1):14207-014207
We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation(SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. Two Mg O doped periodically poled lithium niobates(Mg O:PPLN) with grating periods of 28.5–31.5 μm in steps of 0.5 μm and19.5–21.3 μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 m W at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 m W at 1628 nm.  相似文献   

17.
We describe progress in the measurement and control of the carrier-envelope phase-slip frequencies of pulses generated by a femtosecond optical parametric oscillator. Example applications of such control are presented and include the generation of a frequency comb spanning nearly three optical octaves, and the creation of a train of 30-fs pulses via coherent pulse synthesis. Future prospects for frequency combs based on femtosecond optical parametric oscillators are discussed.  相似文献   

18.
We combined a tunable continuous-wave optical parametric oscillator and a femtosecond Ti:sapphire laser frequency comb to provide a phase-coherent bridge between the visible and the mid-infrared spectral ranges. As a first demonstration of this new technique we performed a direct frequency comparison between an iodine-stabilized Nd:YAG laser at 1064 nm and an infrared methane optical frequency standard at 3.39 microm.  相似文献   

19.
We demonstrate a passively mode-locked femtosecond Yb:KLu(WO(4))(2) thin-disk laser oscillator. Chirped-pulse operation in the positive dispersion regime as well as solitary operation have been realized, and the laser performance of both configurations are compared. In the solitary mode-locking regime the output power exceeds 25 W in a diffraction-limited beam, and pulse durations as short as 440 fs at a 34.7 MHz repetition rate have been generated. For the first time we present a chirped-pulse operation of a thin-disk oscillator that yields a maximum average output power of 9.5 W with a Fourier limit of 450 fs.  相似文献   

20.
A mid-infrared supercontinuum (SC) is generated in ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF...) fluoride fibers from amplified nanosecond laser diode pulses with a continuous spectrum from approximately 0.8 microm to beyond 4.5 microm. The SC has an average power of approximately 23 mW, a pump-to-SC power conversion efficiency exceeding 50%, and a spectral power density of approximately -20 dBm/nm over a large fraction of the spectrum. The SC generation is initiated by the breakup of nanosecond laser diode pulses into femtosecond pulses through modulation instability, and the spectrum is then broadened primarily through fiber nonlinearities in approximately 2-7 m lengths of ZBLAN fiber. The SC long-wavelength edge is consistent with the intrinsic ZBLAN material absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号