首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we examine the generalized Buckley-Leverett equations governing threephase immiscible, incompressible flow in a porous medium, in the absence of gravitational and diffusive/dispersive effects. We consider the effect of the relative permeability models on the characteristic speeds in the flow. Using a simple idea from projective geometry, we show that under reasonable assumptions on the relative permeabilities there must be at least one point in the saturation triangle at which the characteristic speeds are equal. In general, there is a small region in the saturation triangle where the characteristic speeds are complex. This is demonstrated with the numerical results at the end of the paper.Symbols and Notation a, b, c, d entries of Jacobian matrix - A, B, C, D coefficients in Taylor expansion of t, v, a - det J determinant of matrix J - dev J deviator of matrix J - J Jacobian matrix - L linear term in Taylor expansion for J near (s v, sa) = (0, 1) - m slope of r + - p pressure - r± eigenvectors of Jacobian matrix - R real line - S intersection of saturation triangle with circle of radius centered at (1, 0) - S intersection of saturation triangle with circle of radius centered at (0, 1) - s l, sv, sa saturations of phases (liquid, vapor, aqua) - tr J trace of matrix J - v l , v v , v a phase flow rates (Darcy velocities) - v T total flow rate - X, Y, Z entries of dev J - smooth closed curve inside saturation triangle - saturation triangle - l, v, a phase density times gravitational acceleration times resevoir dip angle - K total permeability - l, v, a three-phase relative permeabilities - lv>, la liquid phase relative permeabilities from two-phase data - l, v, a mobilities of phases - T total mobility - l Corey mobility - l, v, a phase viscosities - ± eigenvalues of Jacobian matrix - porosity Supported in part by National Science Foundation grant No. DMS-8701348, by Air Force Office of Scientific Research grant No. AFOSR-87-0283, and by Army Research Office grant No. DAAL03-88-K-0080.This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.  相似文献   

2.
Summary The viscous properties of calcium carbonate filled polyethylene and polystyrene melts were examined. The relative vircosity r defined in the previous paper gave an asymtptotic value( r)l in the range of the shear stress below 105 dyne/cm2.( r)l of the calcium carbonate filled system was higher than that of the glass beads or glass balloons filled system at the same volume fraction of the filler. Maron-Pierce equation with 0 = 0.44 was able to approximate the( r)l — relationship. However, it was deduced here that the high value of( r)l of calcium carbonyl filled system was due to the apparent increase of and this increase was attributed to the fixed polymer layer formed on the powder particle. By assuming the particle as a sphere with a diameter of 2 µm, the thickness of the fixed polymer layer was estimated as about 0.17 µm. The yield stress estimated from the Casson's plots increased exponentially with.
Zusammenfassung Es wurden die viskosen Eigenschaften von Polyäthylen-und Polystyrol-Schmelzen untersucht, die mit Kalziumkarbonat-Teilchen gefüllt waren. Für die relative Viskosität r, wie sie in einer vorangegangenen Veröffentlichung definiert worden war, ergab sich bei Schubspannungen unterhalb 105 dyn/cm2 ein asymptotischer Wert( r)l. Dieser war bei den mit Kalziumkarbonat gefüllten Schmelzen höher als bei Schmelzen, die bis zur gleichen Volumenkonzentration mit Glaskugeln oder Glasballons gefüllt waren. Die ( r) l -Abhängigkeit ließ sich durch eine Gleichung nachMaron und Pierce mit 0 = 0,44 beschreiben. Es wurde jedoch geschlossen, daß der hohe( r)l-Wert der mit Kalziumkarbonat gefüllten Schmelzen auf eine scheinbare Zunahme von zurückzuführen ist, verursacht durch eine feste Polymerschicht auf der Teilchenoberfläche. Unter Annahme kugelförmiger Teilchen mit einem Durchmesser von 2 µm ließ sich die zugeordnete Schichtdicke zu 0,17 µm abschätzen. Die mittels der Casson-Beziehung geschätzte Fließspannung ergab eine exponentielle-Abhängigkeit.


With 7 figures and 1 table  相似文献   

3.
Stochastic subsurface transport theories either disregard local dispersion or take it to be constant. We offer an alternative Eulerian-Lagrangian formalism to account for both local dispersion and first-order mass removal (due to radioactive decay or biodegradation). It rests on a decomposition of the velocityv into a field-scale componentv , which is defined on the scale of measurement support, and a zero mean sub-field-scale componentv s , which fluctuates randomly on scales smaller than. Without loss of generality, we work formally with unconditional statistics ofv s and conditional statistics ofv . We then require that, within this (or other selected) working framework,v s andv be mutually uncorrelated. This holds whenever the correlation scale ofv is large in comparison to that ofv s . The formalism leads to an integro-differential equation for the conditional mean total concentration c which includes two dispersion terms, one field-scale and one sub-field-scale. It also leads to explicit expressions for conditional second moments of concentration cc. We solve the former, and evaluate the latter, for mildly fluctuatingv by means of an analytical-numerical method developed earlier by Zhang and Neuman. We present results in two-dimensional flow fields of unconditional (prior) mean uniformv . These show that the relative effect of local dispersion on first and second moments of concentration dies out locally as the corresponding dispersion tensor tends to zero. The effect also diminishes with time and source size. Our results thus do not support claims in the literature that local dispersion must always be accounted for, no matter how small it is. First-order decay reduces dispersion. This effect increases with time. However, these concentration moments c and cc of total concentrationc, which are associated with the scale below, cannot be used to estimate the field-scale concentrationc directly. To do so, a spatial average over the field measurement scale is needed. Nevertheless, our numerical results show that differences between the ensemble moments ofc and those ofc are negligible, especially for nonpoint sources, because the ensemble moments ofc are already smooth enough.  相似文献   

4.
A numerical solution is obtained for the problem of air flow past a sphere under conditions when nonequilibrium excitation of the vibrational degrees of freedom of the molecular components takes place in the shock layer. The problem is solved using the method of [1]. In calculating the relaxation rates account was taken of two processes: 1) transition of the molecular translational energy into vibrational energy during collision; 2) exchange of vibrational energy between the air components. Expressions for the relaxation rates were computed in [2]. The solution indicates that in the state far from equilibrium a relaxation layer is formed near the sphere surface. A comparison is made of the calculated values of the shock standoff with the experimental data of [3].Notation uVmax, vVmax velocity components normal and tangential to the sphere surface - Vmax maximal velocity - P V max 2 pressure - density - TT temperature - eviRT vibrational energy of the i-th component per mole (i=–O2, N2) - =rb–1 shock wave shape - a f the frozen speed of sound - HRT/m gas total enthalpy  相似文献   

5.
A method is proposed which, for specific assumptions, allows us to determine the density distribution of a constant current flowing between electrodes in a plasma for plane parallel or radially symmetric electric and magnetic fields, allowing for anisotropic conductivity.Notation er, e, ez unit vectors in a cylindrical coordinate system - E, er, ez electric field strength vector and its components - V electric field potential - H, Hr, H, Hz magnetic field strength and its components - j current density vector - e electron charge - m electron mass - c velocity of light - momentum transfer time - 0 normal plasma conductivity - e electron cyclotron frequency - h unit vector in the direction of the magnetic field  相似文献   

6.
Positively invariant regions for a problem in phase transitions   总被引:1,自引:0,他引:1  
Positively invariant regions for the system v t + p(W) x = V xx , W t V x = W xx are constructed where p < 0, w < , w > , p(w) = 0, w , > 0. Such a choice of p is motivated by the Maxwell construction for a van der Waals fluid. The method of an analysis is a modification of earlier ideas of Chueh, Conley, & Smoller [1]. The results given here provide independent L bounds on the solution (w, v).Dedicated to Professor James Serrin on the occasion of his sixtieth birthday  相似文献   

7.
In this paper we study differential equations of the formx(t) + x(t)=f(x(t)), x(0)=x 0 C HereC is a closed, bounded convex subset of a Banach spaceX,f(C) C, and it is often assumed thatf(x) is a quadratic map. We study the differential equation by using the general theory of nonexpansive maps and nonexpansive, non-linear semigroups, and we obtain sharp results in a number of cases of interest. We give a formula for the Lipschitz constant off: C C, and we derive a precise explicit formula for the Lipschitz constant whenf is quadratic,C is the unit simplex inR n, and thel 1 norm is used. We give a new proof of a theorem about nonexpansive semigroups; and we show that if the Lipschitz constant off: CC is less than or equal to one, then limtf(x(t))–x(t)=0 and, if {x(t):t 0} is precompact, then limtx(t) exists. Iff¦C=L¦C, whereL is a bounded linear operator, we apply the nonlinear theory to prove that (under mild further conditions on C) limt f(x(t))–x(t)=0 and that limt x(t) exists if {x(t):t 0} is precompact. However, forn 3 we give examples of quadratic mapsf of the unit simplex ofR n into itself such that limt x(t) fails to exist for mostx 0 C andx(t) may be periodic. Our theorems answer several questions recently raised by J. Herod in connection with so-called model Boltzmann equations.  相似文献   

8.
This paper reports the investigation of mean and turbulent flow characteristics of a two-dimensional plane diffuser. Both experimental and theoretical details are considered. The experimental investigation consists of the measurement of mean velocity profiles, wall static pressure and turbulence stresses. Theoretical study involves the prediction of downstream velocity profiles and the distribution of turbulence kinetic energy using a well tested finite difference procedure. Two models, viz., Prandtl's mixing length hypothesis and k- model of turbulence, have been used and compared. The nondimensional static pressure distribution, the longitudinal pressure gradient, the pressure recovery coefficient, percentage recovery of static pressure, the variation of U max/U bar along the length of the diffuser and the blockage factor have been valuated from the predicted results and compared with the experimental data. Further, the predicted and the measured value of kinetic energy of turbulence have also been compared. It is seen that for the prediction of mean flow characteristics and to evaluate the performance of the diffuser, a simple turbulence model like Prandtl's mixing length hypothesis is quite adequate.List of symbols C 1 , C 2 ,C turbulence model constants - F x body force - k kinetic energy of turbulence - l m mixing length - L length of the diffuser - u, v, w rms value of the fluctuating velocity - u, v, w turbulent component of the velocity - mean velocity in the x direction - A average velocity at inlet - U bar average velocity in any cross section - U max maximum velocity in any cross section - V mean velocity in the y direction - W local width of the diffuser at any cross section - x, y coordinates - dissipation rate of turbulence - m eddy diffusivity - Von Karman constant - mixing length constant - l laminar viscosity - eff effective viscosity - v kinematic viscosity - density - k effective Schmidt number for k - effective Schmidt number for - stream function - non dimensional stream function  相似文献   

9.
Two jet methods for saturating the fluid boundary layer with microbubbles for drag reduction in contrust with gas injection through porous materials are considered. The first method is the gas injection through the slot under a special fluid wall jet. The second method is the saturation of boundary layer by microbubbles via the gas-water mixture injection through the slot. Experimental data, reflecting the skin friction drag reduction on the flat plate and total drag reduction of axisymmetric bodies, are presented. The comparison between a jet methods of gas injection and gas injection through porous materials is made.Nomenclature v free-stream velocity - v j mean velocity of a water through slot - v g mean velocity of a gas through slot - h width of slot for realizing water jet - h 1 width of slot for gas injection - incidence angle - Q volume airflow rate - C Q airflow rate coefficient (v g/v ) - C f skin friction coefficient - v j/v - C f0 C f ifQ=0 andv j=0 - f C f/C f 0 - d diameter of an axisymmetric body - L length of body - C Q 4 · ·Q/d 2 v - C D 4 ·D/1/2v 2 ·d 2 - C Q 4 ·Q/d 2 v - Q j volume flow rate of water jet - C 8 ·Q jvj/d 2 v 2 - 1 fluid density of main flow - 2 fluid density of wall jet - B 1 main stream total pressure - B 2 wall jet total pressure - v 1 main stream velocity - Be (B 2B 1)/1/21 v 1 2 = Bernoulli number - 2 v 2/1 v 1 - p st static pressure - p at atmospheric pressure - p st/p at - D hydrodynamic drag of body  相似文献   

10.
A nonequilibrium theory of a slurry is developed and its practical use is illustrated by a simple stability analysis. Here a slurry is defined as a deformable continuum consisting of a liquid phase containing in suspension a large number of small solid particles which have formed by solidification from the liquid. The liquid is assumed to consist of two components and the solid to contain only one of the two. Consequently, the process of change of phase requires redistribution of material on the scale of the solid particles. This process is assumed to take a finite amount of time, requiring a nonequilibrium macroscopic theory. This theory contains four thermodynamic variables, three to represent the equilibrium state of the binary system and a fourth measuring the departure from thermodynamic equilibrium. The process of microscale diffusion of material is parameterized in the macroscale theory, leading to a Landau-type relaxation term in the equation of evolution of the fourth variable. The theory is simplified to yield a Boussinesq-like set of governing equations. Their practical use is illustrated by analyzing the stability of a simple steady solution of the equations and the effects of a non-zero relaxation time are discussed. A novel instability mechanism involving sedimentation of particles, previously found to occur in the equilibrium case, is found to persist in nonequilibrium, but disappears in the limit of no change of phase.Key to symbols a, b, c thermodynamic coefficients; see (3.36)–(3.38) - sedimentation coefficient; see (5.18) - C p specific heat; see (3.24) - C p de specific heat of the slurry; see (3.28) and (3.30) - c radius of solid particle (in §4) - D, D diffusive coefficients; see (3.40) and (3.41) - material diffusivity in liquid phase - D * modified diffusion coefficient; see (5.15) - d thermodynamic coefficient; see (3.39) - E specific internal energy - f, g, h thermodynamic coefficients; see (3.36)–(3.38) - g acceleration of gravity - reduced gravity; see (5.10) - i total diffusive flux vector of constituent 1 - i diffusive flux vector of constituent 1 in the liquid phase - j diffusive flux vector of solid phase - k thermal conductivity - k entropy flux vector - k T, kT thermodiffusion coefficients; see (3.40) and (3.41) - L latent heat of solidification per unit mass; see (3.7) and (3.24) - m wave number - m s rate of creation of mass of solid per unit volume through solidification - m 1 s rate of creation of mass of solid constituent 1 per unit volume through solidification - mass rate of freezing per unit area per unit time - N number of solid particles per unit volume - p pressure - p H hydrostatic component of pressure - p m mechanical pressure - p 1 dynamic component of pressure - q heat flux vector - Q D rate of regeneration of heat through diffusive fluxes - Q M rate of regeneration of heat through phase-change processes - Q v rate of regeneration of heat through viscosity - Q vector defined by (3.16) - r heat externally supplied per unit mass (in §3); spherical radial coordinate (in §4) - S specific entropy of slurry - change of specific entropy with mass fraction of constituent 1; also change of chemical potential of liquid phase with temperature barring change of phase - change of chemical potential of liquid phase with temperature in phase equilibrium; see (3.28) and (3.30) - T temperature - t time - t 0 relaxation time; see (5.30) - u barycentric velocity - u H horizontal perturbation velocity - V sedimentation speed - w a upward speed of simple state; see (6.5) and (6.12) - z upward vertical coordinate - upward unit vector - thermal expansion coefficient barring change of phase; see (3.23) - > * thermal expansion coefficient in phase equilibrium; see (3.27) and (3.30) - modified thermal expansion coefficient; see (5.1) and (5.4) - isothermal compressibility of slurry barring change of phase; see (3.23) - * isothermal compressibility of slurry in phase equilibrium; see (3.27) and (3.30) - dimensionless measure of departure from liquidus equilibrium; see (5.2) - a deviation from phase equilibrium in simple state; see (6.6) and (6.13) - vertical wave number - volume expansion per unit mass upon melting; see (3.6) - change of chemical potential of liquid phase with pressure; see (3.25) - change of chemical potential of liquid phase with pressure for slurry; see (3.29) and (3.30) - compositional gradient in the static state; see (6.15) - vector defined by (3.35) - constant of integration; see (6.7) and (6.8) - coefficient defined by (6.23) - nonequilibrium expansion coefficient; see (5.1) and (5.4) - thermal diffusivity; =k/C p - modified thermal diffusivity; see (5.33) - relaxation rate to phase equilibrium; see (2.2) - 1 relaxation rate to solid-composition equilibrium; see (2.3) - sedimentation coefficient; see (4.29) - horizontal wave number vector - sedimentation coefficient; see (4.30) - L , s chemical potential of constituent 1 relative to constituent 2 in liquid and solid phase per unit mass; see (2.6) - change of chemical potential of liquid with liquid composition; see (3.8) - coefficient defined by (3.10) - kinematic shear viscosity - total mass fraction of constituent 1 (i.e., solute) - L, s mass fraction of constituent 1 in liquid and solid phases - density of slurry - s density of solid phase - - - , growth rate of disturbance - stress tensor - deviatoric stress tensor - dimensionless temperature; see (5,3) - a constant of integration; see (6.7) - mass fraction of solid phase in slurry - b vertical gradient of mass fraction of solid; see (6.1) - dimensionless measure of b; see (6.22) - c temporal gradient of mass fraction of solid; see (6.1) - specific Gibbs free energy; see (3.13) - L,s specific Gibbs free energy of liquid and solid phases; see (2.12) - measure of departure from liquidus equilibrium; see (2.14) - measure of departure from solidus equilibrium; see (2.5) - spherical polar coordinate (in §4); see (4.20); wave angle (in §6); see (6.38)  相似文献   

11.
In dynamic rheological experiments melt behavior is usually expressed in terms of complex viscosity * () or complex modulusG * (). In contrast, we attempted to use the complex fluidity * () = 1/µ * () to represent this behavior. The main interest is to simplify the complex-plane diagram and to simplify the determination of fundamental parameters such as the Newtonian viscosity or the parameter of relaxation-time distribution when a Cole-Cole type distribution can be applied. * () complex shear viscosity - () real part of the complex viscosity - () imaginary part of the complex viscosity - G * () complex shear modulus - G() storage modulus in shear - G() loss modulus in shear - J * () complex shear compliance - J() storage compliance in shear - J() loss compliance in shear - shear strain - rate of strain - angular frequency (rad/s) - shear stress - loss angle - * () complex shear fluidity - () real part of the complex fluidity - () imaginary part of the complex fluidity - 0 zero-viscosity - 0 average relaxation time - h parameter of relaxation-time distribution  相似文献   

12.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

13.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

14.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

15.
Let be a simply connected domain in the x 1-x 2 plane which lies within the strip 0<x 2, is a simple closed piecewise smooth curve. Let l= [(x 1, x 2): (x 1, x 2) and x 1>0], l = [(x 1 x 2): (x 1 ,x 2) and x 1>1>0].Suppose that a two-dimensional homogeneous isotropic elastic body occupies , that a self-equilibrated stress loading is applied to - l, and that l is stress-free. Knowles [2] and Flavin [6] showed that the elastic energy in l decays exponentially with respect to l with an exponential decay constant of the form k/b, where k is a universal constant. It is shown here that a decay constant of the form c/ may be obtained where c is a universal constant and is a characteristic dimension of , which is more appropriate than b for general non-striplike domains. In addition, an appropriate decay theorem is obtained for coil-like domains.  相似文献   

16.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

17.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

18.
Expressions are obtained for the pressure distribution in an externally pressurised thrust bearing for the condition when one bearing surface is rotated. The influence of centripetal acceleration and the combined effect of rotational and radial inertia terms are included in the analysis. Rotation of the bearing causes the lubricant to have a velocity component in an axial direction towards the rotating surface as it spirals radially outwards between the bearing surfaces. This results in an increase in the pumping losses and a decrease in the load capacity of the bearing. A further loss in the performance of the bearing is found when the radial inertia term, in addition to the rotational inertia term is included in the analysis.Nomenclature r, z, cylindrical co-ordinates - V r, V , V z velocity components in the r, and z directions respectively - U, X, W representative velocities - coefficient of viscosity - p static pressure at radius r - p mean static pressure at radius r - Q volume flow per unit time - 2h lubricant film thickness - density of the lubricant - r 2 outside radius of bearing = D/2 - angular velocity of bearing - R dimensionless radius = r/h - P dimensionless pressure = h 3 p/Q - Re channel Reynolds number = Q/h  相似文献   

19.
Zusammenfassung Für die eingefrorene laminare Grenzschichtströmung eines teilweise dissoziierten binären Gemisches entlang einer stark gekühlten ebenen Platte wird eine analytische Näherungslösung angegeben. Danach läßt sich die Wandkonzentration als universelle Funktion der Damköhler-Zahl der Oberflächenreaktion angeben. Für das analytisch darstellbare Konzentrationsprofil stellt die Damköhler-Zahl den Formparameter dar. Die Wärmestromdichte an der Wand bestehend aus einem Wärmeleitungs- und einem Diffusionsanteil wird angegeben und diskutiert. Das Verhältnis beider Anteile läßt sich bei gegebenen Randbedingungen als Funktion der Damköhler-Zahl ausdrücken.
An analytical approximation for the frozen laminar boundary layer flow of a binary mixture
An analytical approximation is derived for the frozen laminar boundary layer flow of a partially dissociated binary mixture along a strongly cooled flat plate. The concentration at the wall is shown to be a universal function of the Damkohler-number for the wall reaction. The Damkohlernumber also serves as a parameter of shape for the concentration profile which is presented in analytical form. The heat transfer at the wall depending on a conduction and a diffusion flux is derived and discussed. The ratio of these fluxes is expressed as a function of the Damkohler-number if the boundary conditions are known.

Formelzeichen A Atom - A2 Molekül - C Konstante in Gl. (20) - c1=1/(2C) Konstante in Gl. (35) - cp spezifische Wärme bei konstantem Druck - D binärer Diffusionskoeffizient - Ec=u 2 /(2hf) Eckert-Zahl - h spezifische Enthalpie - ht=h+u2/2 totale spezifische Enthalpie - h A 0 spezifische Dissoziationsenthalpie - Kw Reaktionsgeschwindigkeitskonstante der heterogenen Wandreaktion - 1= /( ) Champman-Rubesin-Parameter - Le=Pr/Sc Lewis-Zahl - M Molmasse - p statischer Druck - Pr= cpf/ Prandtl-Zahl - qw Wärmestromdichte an der Wand - qcw, qdw Wärmeleitungsbzw. Diffusionsanteil der Wärmestromdichte an der Wand - universelle Gaskonstante - R=/(2Ma) individuelle Gaskonstante der molekularen Komponente - Rex= u x/ Reynolds-Zahl - Sc=/( D) Schmidt-Zahl - T absolute Temperatur - Td=h A 0 /R charakteristische Dissoziationstemperatur - u, v x- und y-Komponenten der Geschwindigkeit - U=u/u normierte x-Komponente der Geschwindigkeit - x, y Koordinaten parallel und senkrecht zur Platte Griechische Symbole - =A/ Dissoziationsgrad - Grenzschichtdicke - 2 Impulsverlustdicke - Damköhler-Zahl der Oberflächenreaktion - =T/T normierte Temperatur - =y/ normierter Wandabstand - Wärmeleitfähigkeit - dynamische Viskosität - , * Ähnlichkeitskoordinaten - Dichte - Schubspannung Indizes A auf ein Atom bezogen - M auf ein Molekül bezogen - f auf den eingefrorenen Zustand bezogen - w auf die Wand bezogen - auf den Außenrand der Grenzschicht bezogen  相似文献   

20.
Zusammenfassung Die Einführung von Zylinderkoordinaten (x, r, ) in die Gleichgewichtsbedingungen der Schnittkräfte bzw. in die Beziehungen zwischen Verzerrung und Verschiebungen am differentialen Schalenabschnitt ermöglicht die Berechnung des Spannungs- und Verschiebungszustandes von drehsymmetrischen Membranen mit beliebig gekrümmter Meridiankurve auf die Integration einer einfachen, linearen partiellen Differentialgleichung zweiter Ordnung für eine charakteristische FunktionF bzw. zurückzuführen. Eine geschlossene Lösung und damit eine Darstellung der Schnittkräfte und Verschiebungen durch explizite Formeln ist bei harmonischer Belastung cosn für zwei Funktionsgruppen=x 2 und=x –3 möglich. Im Sonderfall der drehsymmetrischen und der antimetrischen Belastung mitn=0 undn=1 gelten die Gleichungen der Schnitt- und Verschiebungsgrößen für eine beliebige Meridianfunktion=(). Die Betrachtungen der Randbedingungen offener Schalen bei harmonischer Belastung geben über die infinitesimalen Deformationen einer drehsymmetrischen Membran mit überall negativer Krümmung Aufschluß.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号