首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a finite buffer fluid queue receiving its input from the output of a Markovian queue with finite or infinite waiting room. The input flow into the fluid queue is thus characterized by a Markov modulated input rate process and we derive, for a wide class of such input processes, a procedure for the computation of the stationary buffer content of the fluid queue and the stationary overflow probability. This approach leads to a numerically stable algorithm for which the precision of the result can be specified in advance.  相似文献   

2.
In this note we consider the fluid queue driven by anM/M/1 queue as analysed by Virtamo and Norros [Queueing Systems 16 (1994) 373–386]. We show that the stationary buffer content in this model can be easily analysed by looking at embedded time points. This approach gives the stationary buffer content distribution in terms of the modified Bessel function of the first kind of order one. By using a suitable integral representation for this Bessel function we show that our results coincide with the ones of Virtamo and Norros.  相似文献   

3.
We consider a tandem fluid system composed of multiple buffers connected in a series. The first buffer receives input from a number of independent homogeneous on-off sources and each buffer provides input to the next buffer. The active (on) periods and silent (off) periods follow general and exponential distribution, respectively. Furthermore, the generally distributed active periods are controlled by an exponential timer. Under this assumption, explicit expressions for the distribution of the buffer content for the first buffer fed by a single source is obtained for the fluid queue driven by discouraged arrivals queue and infinite server queue. The buffer content distribution of the subsequent buffers when the first buffer is fed by multiple sources are found in terms of confluent hypergeometric functions. Numerical results are illustrated to compare the trend of the average buffer content for the models under consideration.  相似文献   

4.
A fluid queue receiving its input from the output of a precedingM/M/1 queue is considered. The input can be characterized as a Markov modulated rate process and the well known spectral decomposition technique can be applied. The novel features in this system relate to the nature of the spectrum, which is shown to be composed of a continuous part and one or two discrete points depending on whether the load of the fluid queue is less or greater than the output to input rate ratio. Explicit expressions of the generalized eigenvectors are given in terms of Chebyshev polynomials of the second kind, and the resolution of unity is determined. The solution for the buffer content distribution is obtained as a simple integral expression. Numerical examples are given.  相似文献   

5.
Priority queueing systems come natural when customers with diversified delay requirements have to wait to get service. The customers that cannot tolerate but small delays get service priority over customers which are less delay-sensitive. In this contribution, we analyze a discrete-time two-class preemptive repeat identical priority queue with infinite buffer space and generally distributed service times. Newly arriving high-priority customers interrupt the on-going service of a low-priority customer. After all high-priority customers have left the system, the interrupted service of the low-priority customer has to be repeated completely. By means of a probability generating functions approach, we analyze the system content and the delay of both types of customers. Performance measures (such as means and variances) are calculated and the impact of the priority scheduling is discussed by means of some numerical examples.  相似文献   

6.
We consider an infinite capacity second-order fluid queue with subordinator input and Markovmodulated linear release rate. The fluid queue level is described by a generalized Langevin stochastic differential equation (SDE). Applying infinitesimal generator, we obtain the stationary distribution that satisfies an integro-differential equation. We derive the solution of the SDE and study the transient level's convergence in distribution. When the coefficients of the SDE are constants, we deduce the system transient property.  相似文献   

7.
K. Sikdar  U. C. Gupta 《TOP》2005,13(1):75-103
We consider a finite buffer batch service queueing system with multiple vacations wherein the input process is Markovian arrival process (MAP). The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. The service- and vacation- times are arbitrarily distributed. We obtain the queue length distributions at service completion, vacation termination, departure, arbitrary and pre-arrival epochs. Finally, some performance measures such as loss probability, average queue lengths are discussed. Computational procedure has been given when the service- and vacation- time distributions are of phase type (PH-distribution).  相似文献   

8.
Ishizaki  Fumio  Takine  Tetsuya 《Queueing Systems》1999,31(3-4):317-326
We consider a discrete-time single-server queue with arrivals governed by a stationary Markov chain, where no arrivals are assumed to occur only when the Markov chain is in a particular state. This assumption implies that off-periods in the arrival process are i.i.d. and geometrically distributed. For this queue, we establish the exact relationship between queue length distributions in a finite-buffer queue and the corresponding infinite-buffer queue. With the result, the exact loss probability is obtained in terms of the queue length distribution in the corresponding infinite-buffer queue. Note that this result enables us to compute the loss probability very efficiently, since the queue length distribution in the infinite-buffer queue can be efficiently computed when off-periods are geometrically distributed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
We consider a multiserver retrial GI/G/m queue with renewal input of primary customers, interarrival time τ with rate , service time S, and exponential retrial times of customers blocked in the orbit. In the model, an arriving primary customer enters the system and gets a service immediately if there is an empty server, otherwise (if all m servers are busy) he joins the orbit and attempts to enter the system after an exponentially distributed time. Exploiting the regenerative structure of the (non-Markovian) stochastic process representing the total number of customers in the system (in service and in orbit), we determine stability conditions of the system and some of its variations. More precisely, we consider a discrete-time process embedded at the input instants and prove that if and , then the regeneration period is aperiodic with a finite mean. Consequently, this queue has a stationary distribution under the same conditions as a standard multiserver queue GI/G/m with infinite buffer. To establish this result, we apply a renewal technique and a characterization of the limiting behavior of the forward renewal time in the (renewal) process of regenerations. The key step in the proof is to show that the service discipline is asymptotically work-conserving as the orbit size increases. Included are extensions of this stability analysis to continuous-time processes, a retrial system with impatient customers, a system with a general retrial rate, and a system with finite buffer for waiting primary customers. We also consider the regenerative structure of a multi-dimensional Markov process describing the system. This work is supported by Russian Foundation for Basic Research under grants 04-07-90115 and 07-07-00088.  相似文献   

10.
This paper studies the behavior of a discrete queueing system which accepts synchronized arrivals and provides synchronized services. The number of arrivals occurring at an arriving point may follow any arbitrary discrete distribution possessing finite first moment and convergent probability generating function in ¦ z ¦ 1 + with > 0. The system is equipped with an infinite buffer and one or more servers operating in synchronous mode. Service discipline may or may not be prioritized. Results such as the probability generating function of queue occupancy, average queue length, system throughput, and delay are derived in this paper. The validity of the results is also verified by computer simulations.The work reported in this paper was supported by the National Science Council of the Republic of China under Grant NSC1981-0404-E002-04.  相似文献   

11.
A fluid queue with ON periods arriving according to a Poisson process and having a long-tailed distribution has long range dependence. As a result, its performance deteriorates. The extent of this performance deterioration depends on a quantity determined by the average values of the system parameters. In the case when the the performance deterioration is the most extreme, we quantify it by studying the time until the amount of work in the system causes an overflow of a large buffer. This turns out to be strongly related to the tail behavior of the increase in the buffer content during a busy period of the M/G/∞ queue feeding the buffer. A large deviation approach provides a powerful method of studying such tail behavior. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
This paper studies a fluid model driven by an M/G/1 queue with multiple exponential vacations. By introducing various vacation strategies to the fluid model, we can provide greater flexibility for the design and control of input rate and output rate. The Laplace transform of the steady-state distribution of the buffer content is expressed through the minimal positive solution to a crucial equation. Then the performance measure-mean buffer content, which is independent of the vacation parameter, is obtained. Finally, with some numerical examples, the parameter effect on the mean buffer content is presented.  相似文献   

13.
We consider an infinite buffer single server queue wherein customers arrive according to the batch renewal arrival process and are served in batches following the random serving capacity rule. The service-batch times follow exponential distribution. This model has been studied in the past using the embedded Markov chain technique and probability generating function. In this paper we provide an alternative yet simple methodology to carry out the whole analysis which is based on the supplementary variable technique and the theory of difference equations. The procedure used here is simple in the sense that it does not require the complicated task of constructing the transition probability matrix. We obtain explicit expressions of the steady-state system-content distribution at pre-arrival and arbitrary epochs in terms of roots of the associated characteristic equation. We also present few numerical results in order to illustrate the computational procedure.  相似文献   

14.
On a synchronization queue with two finite buffers   总被引:1,自引:0,他引:1  
Takahashi  Misa  Ōsawa  Hideo  Fujisawa  Takehisa 《Queueing Systems》2000,36(1-3):107-123
In this paper, we consider a synchronization queue (or synchronization node) consisting of two buffers with finite capacities. One stream of tokens arriving at the system forms a Poisson process and the other forms a PH-renewal process. The tokens are held in the buffers until one is available from each flow, and then a group-token is instantaneously released as a synchronized departure. We show that the output stream of a synchronization queue is a Markov renewal process, and that the time between consecutive departures has a phase type distribution. Thus, we obtain the throughput of this synchronization queue and the loss probabilities of each type of tokens. Moreover, we consider an extended synchronization model with two Poisson streams where a departing group-token consists of several tokens in each buffer. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
This work introduces the join the shortest queue policy in the retrial setting. We consider a Markovian single server retrial system with two infinite capacity orbits. An arriving job finding the server busy, it is forwarded to the least loaded orbit. Otherwise, it is forwarded to an orbit randomly. Orbiting jobs of either type retry to access the server independently. We investigate the stability condition, the stationary tail decay rate, and obtain the equilibrium distribution by using the compensation method.  相似文献   

16.
The central model of this paper is anM/M/1 queue with a general probabilistic feedback mechanism. When a customer completes his ith service, he departs from the system with probability 1–p(i) and he cycles back with probabilityp(i). The mean service time of each customer is the same for each cycle. We determine the joint distribution of the successive sojourn times of a tagged customer at his loops through the system. Subsequently we let the mean service time at each loop shrink to zero and the feedback probabilities approach one in such a way that the mean total required service time remains constant. The behaviour of the feedback queue then approaches that of anM/G/1 processor sharing queue, different choices of the feedback probabilities leading to different service time distributions in the processor sharing model. This is exploited to analyse the sojourn time distribution in theM/G/1 queue with processor sharing.Some variants are also considered, viz., anM/M/1 feedback queue with additional customers who are always present, and anM/G/1 processor sharing queue with feedback.  相似文献   

17.
The infinite server model of Cox with arbitrary service time distribution appears to provide a large class of traffic models - Pareto and log-normal distributions have already been reported in the literature for several applications. Here we begin the analysis of the large buffer asymptotics for a multiplexer driven by this class of inputs. To do so we rely on recent results by Duffield and O’Connell on overflow probabilities for the general single server queue. In this paper we focus on the key step in this approach: The appropriate large deviations scaling is shown to be related to the forward recurrence time of the service time distribution, and a closed form expression is derived for the corresponding generalized limiting log-moment generating function associated with the input process. Three different regimes are identified. In a companion paper we apply these results to obtain the large buffer asymptotics under a variety of service time distributions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
This paper considers a reader-writer queue with reader preference. The system can process an unlimited number of readers simultaneously. However, writers have to be processed one at a time. Readers are given non-preemptive priority over writers. Both readers and writers arrive according to Poisson processes (PP) and have general independent service times. There is infinite waiting room for both. This system is analyzed to produce stability conditions. The analysis uses anM/G/ queue busy period to model readers, followed by a modifiedM/G/1 queue to model the entire system. Finally, results are presented for the expected wait-in-queue times for the readers and writers. The paper ends with an example.This work was done while the author was visiting the IBM Corporation, Networking Systems, RTP, NC 27709, USA.  相似文献   

19.
Whitt  Ward 《Queueing Systems》2000,36(1-3):39-70
We review functional central limit theorems (FCLTs) for the queue-content process in a single-server queue with finite waiting room and the first-come first-served service discipline. We emphasize alternatives to the familiar heavy-traffic FCLTs with reflected Brownian motion (RBM) limit process that arise with heavy-tailed probability distributions and strong dependence. Just as for the familiar convergence to RBM, the alternative FCLTs are obtained by applying the continuous mapping theorem with the reflection map to previously established FCLTs for partial sums. We consider a discrete-time model and first assume that the cumulative net-input process has stationary and independent increments, with jumps up allowed to have infinite variance or even infinite mean. For essentially a single model, the queue must be in heavy traffic and the limit is a reflected stable process, whose steady-state distribution can be calculated by numerically inverting its Laplace transform. For a sequence of models, the queue need not be in heavy traffic, and the limit can be a general reflected Lévy process. When the Lévy process representing the net input has no negative jumps, the steady-state distribution of the reflected Lévy process again can be calculated by numerically inverting its Laplace transform. We also establish FCLTs for the queue-content process when the input process is a superposition of many independent component arrival processes, each of which may exhibit complex dependence. Then the limiting input process is a Gaussian process. When the limiting net-input process is also a Gaussian process and there is unlimited waiting room, the steady-state distribution of the limiting reflected Gaussian process can be conveniently approximated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We consider a closed queueing network, consisting of two FCFS single server queues in series: a queue with general service times and a queue with exponential service times. A fixed number \(N\) of customers cycle through this network. We determine the joint sojourn time distribution of a tagged customer in, first, the general queue and, then, the exponential queue. Subsequently, we indicate how the approach toward this closed system also allows us to study the joint sojourn time distribution of a tagged customer in the equivalent open two-queue system, consisting of FCFS single server queues with general and exponential service times, respectively, in the case that the input process to the first queue is a Poisson process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号