首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Modified nanosized MFI (ZSM-5 and silicalite-1) zeolites were successfully synthesized by a hydrothermal method using aluminum isopropoxide and tetraethylorthosilicate as the raw materials. The synthetic zeolites were characterized by X-ray diffraction, energy dispersion spectroscopy, and scanning electron microscopy. The ZSM-5 and silicalite-1 zeolites exhibited ellipse-like and cubic columns, respectively. The K+ ion-exchange equilibrium and ion-exchange capacity of the synthetic zeolites in seawater were investigated. The K+ ion-exchange of synthetic zeolites was rapid and reached an ion-exchange balance in approximately 20 min. The K+ ion-exchange capacity of ZSM-5 and silicalite-1 in seawater was 56.7 and 48.7 mg/g, respectively. The synthetic zeolites have high selectivity toward K+, and therefore, they can be used to selectively extract potassium from seawater.  相似文献   

2.
(Na, K)NbO3 (KNN) powders were successfully prepared by high temperature mixing method (HTMM) under hydrothermal conditions to study the effect of reaction time on the formation of KNN for three K+/(K+ +Na+) ratios of 0.6, 0.7 and 0.8. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), to show the change of phase and morphology of the as-prepared particles with the K+/(K+ + Na+) molar ratio in the solution. Pure Na-rich KNN monoclinic phase and pure K-rich KNN orthorhombic phase could be obtained quickly after mixing the solutions at high temperature when the K+/(K+ +Na+) molar ratio was either 0.6 or 0.8. When the K+/(K+ +Na+) molar ratio was 0.7, however, the K-rich KNN orthorhombic phase grain formed first, followed by the Na-rich KNN monoclinic phase grain, with the two phases coexisting in the final product.  相似文献   

3.
A commercial product of carbon nano-particles, Cabot MONACH 1300 pigment black (CMPB), was studied for basic structural information and electrochemical performance in neutral aqueous electrolytes, aiming at applications in supercapacitors. As confirmed by SEM and HRTEM, the CMPB had a hierarchical structure, containing basic 10 nm nano-spheres which combined into ca. 50 nm agglomerates which further aggregated into larger particles of micrometres. The capacitance of this commercial material was found to increase with decreasing the size of hydrous cation (Li+  Na+  K+), instead of the cation crystal radius (K+  Na+  Li+) when coupled with the same anion (Cl). In electrolytes with the same cation concentration (K+), changing the anion from the larger dianion (SO42−) to the smaller monoanion (Cl) also increased the capacitance at high potential scan rates (>50 mV/s). Increasing electrolyte concentration produced expected effect, including raising the electrode capacitance, but lowering the equivalent series resistance (ESR), charge transfer resistance (CTR), and the diffusion resistance. At higher temperatures, the CMPB exhibited slightly higher capacitance, which does not agree with the Gouy–Chapman theory on electric double layer (EDL). A hypothesis is proposed to account for the capacitance increase with temperature as a result of the CMPB opening up some micro-pores for more ions to access in response to the temperature increase.  相似文献   

4.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

5.
Daily fine particulate (PM2.5) samples were collected in Chengdu from April 2009 to February 2010 to investigate their chemical profiles during dust storms (DSs) and several types of pollution events, including haze (HDs), biomass burning (BBs), and fireworks displays (FDs). The highest PM2.5 mass concentrations were found during DSs (283.3 μg/m3), followed by FDs (212.7 μg/m3), HDs (187.3 μg/m3), and BBs (130.1 μg/m3). The concentrations of most elements were elevated during DSs and pollution events, except for BBs. Secondary inorganic ions (NO3?, SO42?, and NH4+) were enriched during HDs, while PM2.5 from BBs showed high K+ but low SO42?. FDs caused increases in K+ and enrichment in SO42?. Ca2+ was abundant in DS samples. Ion-balance calculations indicated that PM2.5 from HDs and FDs was more acidic than on normal days, but DS and BB particles were alkaline. The highest organic carbon (OC) concentration was 26.1 μg/m3 during FDs, followed by BBs (23.6 μg/m3), HDs (19.6 μg/m3), and DSs (18.8 μg/m3). In contrast, elemental carbon (EC) concentration was more abundant during HDs (10.6 μg/m3) and FDs (9.5 μg/m3) than during BBs (6.2 μg/m3) and DSs (6.0 μg/m3). The highest OC/EC ratios were obtained during BBs, with the lowest during HDs. SO42?/K+ and TCA/SO42? ratios proved to be effective indicators for differentiating pollution events. Mass balance showed that organic matter, SO42?, and NO3? were the dominant chemical components during pollution events, while soil dust was dominant during DSs.  相似文献   

6.
This paper reports on an experimental investigation of the thermal properties behavior of 0.5 wt% silver nanoparticle-based nanofluids (NF) containing oleic acid (OA) and potassium oleate surfactant (OAK+) with concentrations of 0.5, 1, and 1.5 wt% respectively. The experiments were conducted from 20 °C to 80 °C. It was shown that the NF with 1 wt% OAK+ yielded the highest thermal behavior enhancement of about 28% at 80 °C compared to deionized water. The thermal performance had higher than the base fluid/nanofluids at approximately 80%. Moreover, the NF containing OAK+ showed higher thermal conductivity and dynamics of specific heat capacity than deionized water in all of the experimental conditions in this study. The rheological experiment showed that viscosity of NF was significantly dependant on temperature. As shear rate increased, the shear stress of the NF increased; however, the viscosity of the nanofluids decreased first and then stabilized. It was further found that NF containing OAK+ at a range of operating temperatures produced Newtonian behavior.  相似文献   

7.
Aerosol samples were collected over 24 and 12 h to represent day/night aerosol characteristics in forest areas at Ya’an Baima Spring Scenic Area (BM), Panzhihua Cycas National Nature Reserve (PZ), Gongga Mountain National Nature Reserve (GG), and Wolong National Nature Reserve (WL), during the summers of 2010–2012. Mass and chemical component concentrations, including organic carbon, elemental carbon, and inorganic ions (F, Cl, NO2, NO3, SO42−, C2O42−, PO43−, K+, Na+, Ca2+, Mg2+, and NH4+), of PM2.5 aerosols were measured. The average PM2.5 concentrations for 24 h were 72.42, 104.89, 20.55, and 29.19 μg/m3 at BM, PZ, GG, and WL, respectively. Organic matter accounted for 38.0–49.3%, while elemental carbon accounted for 2.0–5.7% of PM2.5 mass. The sum concentrations of SO42−, NH4+, and NO3 accounted for 23.0%, 17.4%, 22.1%, and 30.5% of PM2.5 mass at BM, PZ, GG, and WL, respectively. Soil dust was also an important source of PM2.5, accounting for 6.3%, 17.0%, 10.4%, and 19.1% of PM2.5 mass at BM, PZ, GG, and WL, respectively. These reconstructed masses accounted for 75.9–102.0% of PM2.5 mass from the four forest areas of SW China.  相似文献   

8.
The influence of Na2HPO4·12H2O on the hydrothermal formation of hemihydrate calcium sulfate (CaSO4·0.5H2O) whiskers from dihydrate calcium sulfate (CaSO4·2H2O) at 135 °C was investigated. Experimental results indicate that the addition of phosphorus accelerates the hydrothermal conversion of CaSO4·2H2O to CaSO4·0.5H2O via the formation of Ca3(PO4)2 and produces CaSO4·0.5H2O whiskers with thinner diameters and shorter lengths. Compared with the blank experiment without Na2HPO4·12H2O, the existence of minor amounts (8.65 × 10−4–4.36 × 10−3 mol/L) of Na2HPO4·12H2O led to a decrease in the diameter of CaSO4·0.5H2O whiskers from 1.0–10.0 to 0.5–2.0 μm and lengths from 70–300 to 50–200 μm.  相似文献   

9.
Hollow ordered porous carbon spheres (HOPCS) with a hierarchical structure were prepared by templating with hollow ordered mesoporous silica spheres (HOMSS). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that HOPCS exhibited a spherical hollow morphology. High-resolution TEM, small angle X-ray diffraction (SAXRD) and N2 sorption measurements confirmed that HOPCS inversely replicated the unconnected hexagonal-stacked pore structure of HOMSS, and possessed ordered porosity. HOPCS exhibited a higher storage capacity for Li+ ion battery (LIB) of 527.6 mA h/g, and good cycling performance. A large capacity loss during the first discharge–charge cycle was found attributed to the high content of micropores. The cycling performance was derived from the hierarchical structure.  相似文献   

10.
Unsteady gravity-driven flow of a thin slender rivulet of a non-Newtonian power-law fluid on a plane inclined at an angle α to the horizontal is considered. Unsteady similarity solutions are obtained for both converging sessile rivulets (when 0 < α < π/2) in the case x < 0 with t < 0, and diverging pendent rivulets (when π/2 < α < π) in the case x > 0 with t > 0, where x denotes a coordinate measured down the plane and t denotes time. Numerical and asymptotic methods are used to show that for each value of the power-law index N there are two physically realisable solutions, with cross-sectional profiles that are ‘single-humped’ and ‘double-humped’, respectively. Each solution predicts that at any time t the rivulet widens or narrows according to |x | (2N+1)/2(N+1) and thickens or thins according to |x | N/(N+1) as it flows down the plane; moreover, at any station x, it widens or narrows according to |t | ?N/2(N+1) and thickens or thins according to |t | ?N/(N+1). The length of a truncated rivulet of fixed volume is found to behave according to |t | N/(2N+1).  相似文献   

11.
Pressure drops in the flow through micro-orifices and capillaries were measured for silicone oils, aqueous solutions of polyethylene glycol (PEG), and surfactant aqueous solutions. The diameter of micro-orifices ranged from 5 μm to 400 μm. The corresponding length/diameter ratio was from 4 to 0.05 and capillary diameters were 105 μm and 450 μm. The following results were obtained: silicone oils of 10?6 m2/s and 10?5 m2/s in kinematic viscosity generated a reduction of pressure drop (RPD), that is, drag reduction, similar to the RPD of water and a glycerol/water mixture reported in the previous paper by the present authors. When RPD occurred, the pressure drop (PD) of silicone oils of 10?6 m2/s and 10?5 m2/s had nearly the same magnitude. Namely, the difference in viscosity did not influence RPD. A 103 ppm aqueous solution of PEG20000 provided almost the same PD as that of PEG8000 for the 400 μm to 15 μm orifices, but a greater PD than that of PEG8000 for the 10 μm to 5 μm orifices. A non-ionic surfactant and a cationic surfactant were highly effective in RPD compared with anionic surfactants: the non-ionic and cationic surfactant solutions had PD one order of magnitude lower than that of water under some flow conditions in the concentration range from 1 ppm to 104 ppm, but the anionic surfactant solutions did not generate RPD except in the case of the smallest orifice of 5 μm in diameter. The PD of the non-ionic surfactant solution showed a steep rise at a Reynolds number (Ret) for 400 μm to 15 μm orifices. The Ret provides the relationship Ret = K/D, where D is the orifice diameter, and K is a constant of 2 × 10?2 m for the 100–20 μm orifices irrespective of liquid concentration. Capillary flow experiment revealed that the PEG, non-ionic and cationic surfactant solutions generated RPD also in a laminar flow through the capillary of 105 μm in diameter, but not in the flow through the capillary of 450 μm in diameter. In order to clarify the cause of RPD, an additional experiment was carried out by changing the orifice material from metal to acrylic resin. The result gave a different appearance of RPD, suggesting that RPD is related to an interfacial phenomenon between the liquid and wall. The large RPDs found in the present experiment are very interesting from both academic and practical viewpoints.  相似文献   

12.
Hybrid large-eddy type simulations for chevron nozzle jet flows are performed at Mach 0.9 and Re = 1.03 × 106. Without using any subgrid scale model (SGS), the numerical approach applied in the present study is essentially implicit large-eddy simulation (ILES). However, a Reynolds-averaged Navier–Stokes (RANS) solution is patched into the near wall region. This makes the overall solution strategy hybrid RANS–ILES. The disparate turbulence length scales, implied by these different modeling approaches, are matched using a Hamilton–Jacobi equation. The complex geometry features of the chevron nozzles are fully meshed. With numerical fidelity in mind, high quality, hexahedral multi-block meshes of 12.5 × 106 cells are used. Despite the modest meshes, the novel RANS–ILES approach shows encouraging performance. Computed mean and second-order fluctuating quantities of the turbulent near field compare favorably with measurements. The radiated far-field sound is predicted using the Ffowcs Williams and Hawkings (FW–H) surface integral method. Encouraging agreement of the predicted far-field sound directivity and spectra with measurements is obtained.  相似文献   

13.
The influence of Na2SO4 on the formation of ZnO whiskers was investigated in this paper. ZnO whiskers with aspect ratios of up to 50 were synthesized by dissolving ɛ-Zn(OH)2 precursor in NaOH/Na2SO4 solution at room temperature, followed by aging of the resulting solution at 140 °C for 6 h. Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy analyses revealed that SO42− ions were primarily adsorbed on the (1 0 0) plane of the ZnO whiskers via an outer-sphere complex configuration (OH···O), thereby promoting the one-dimensional growth of ZnO whiskers along the c-axis.  相似文献   

14.
We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water–diethylene glycol mixed solvents at 130 °C for 30 min. We also studied how three surfactants—hexadecyltrimethylammonium bromide, polyvinylpyrrolidone k30 (PVPk30), and polyvinylpyrrolidone k90 (PVPk90)—affected the structure, morphology, and performance of the prepared samples, characterizing them by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge/discharge tests, and electrochemical impedance spectroscopy. All the samples prepared with or without surfactant had orthorhombic structures with the Pnmb space group. Surfactant molecules may have acted as crystal-face inhibitors to adjust the oriented growth, morphology, and particle size of LiMnPO4. The microwave effects could accelerate the reaction and nucleation rates of LiMnPO4 at a lower reaction temperature. The LiMnPO4/C sample prepared with PVPk30 exhibited a flaky structure coated with a carbon layer (∼2 nm thick), and it delivered a discharge capacity of 126 mAh/g with a capacity retention ratio of ∼99.9% after 50 cycles at 1C. Even at 5C, this sample still had a high discharge capacity of 110 mAh/g, demonstrating good rate performance and cycle performance. The improved performance of LiMnPO4 likely came from its nanoflake structure and the thin carbon layer coating its LiMnPO4 particles. Compared with the conventional polyol method, the microwave-assisted polyol method had a much lower reaction time.  相似文献   

15.
Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) were performed for fully-developed turbulent flow in channels with smooth walls and walls featuring hemispherical roughness elements at shear Reynolds numbers Reτ = 180 and 400, with the goal of studying the effect of these roughness elements on the wall-layer structure and on the friction factor. The LES and DNS approaches were verified first by comparison with existing DNS databases for smooth walls. Then, a parametric study for the hemispherical roughness elements was conducted, including the effects of shear Reynolds number, normalized roughness height (k+ = 10–20) and relative roughness spacing (s+/k+ = 2–6). The sensitivity study also included the effect of distribution pattern (regular square lattice vs. random pattern) of the roughness elements on the walls. The hemispherical roughness elements generate turbulence, thus increasing the friction factor with respect to the smooth-wall case, and causing a downward shift in the mean velocity profiles. The simulations revealed that the friction factor decreases with increasing Reynolds number and roughness spacing, and increases strongly with increasing roughness height. The effect of random element distribution on friction factor and mean velocities is however weak. In all cases, there is a clear cut between the inner layer near the wall, which is affected by the presence of the roughness elements, and the outer layer, which remains relatively unaffected. The study reveals that the presence of roughness elements of this shape promotes locally the instantaneous flow motion in the lateral direction in the wall layer, causing a transfer of energy from the streamwise Reynolds stress to the lateral component. The study indicates also that the coherent structures developing in the wall layer are rather similar to the smooth case but are lifted up by almost a constant wall-unit shift y+ (∼10–15), which, interestingly, corresponds to the relative roughness k+ = 10.  相似文献   

16.
Heating of thin foil targets by an high power laser at intensities of 1017–1019 W/cm2 has been studied as a method for producing high temperature, high density samples to investigate X-ray opacity and equation of state. The targets were plastic (parylene-N) foils with a microdot made of a mixture of germanium and titanium buried at depth of 1.5 μm. The L-shell spectra from the germanium and the K-shell spectra from the titanium were taken using crystal spectrometers recording onto film and an ultra fast X-ray streak camera coupled to a conical focussing crystal with a time resolution of 1 ps. The conditions in the microdot were inferred by comparing the measured spectra to synthetic spectra produced by the time-dependent collisional–radiative (CR) models FLY and FLYCHK. The data were also compared to simulated spectra from a number of opacity codes assuming local thermodynamic equilibrium (LTE). Temperature and density gradients were taken into account in the comparisons. The sample conditions were inferred from the CR modelling using FLYCHK to be 800 ± 100 eV and 1.5 ± 0.5 g/cc. The best fit to the LTE models was at a temperature 20% lower than with the CR model. Though the sample departs from LTE significantly useful spectral comparisons can still be made. The results and comparisons are discussed along with improvements to the experimental technique to achieve conditions closer to LTE.  相似文献   

17.
A measurement technique of viscoelastic properties of polymers is proposed to investigate complex Poisson’s ratio as a function of frequency. The forced vibration responses for the samples under normal and shear deformation are measured with varying load masses. To obtain modulus of elasticity and shear modulus, the present method requires only knowledge of the load mass, geometrical characteristics of a sample, as well as both the amplitude ratio and phase lag of the forcing and response oscillations. The measured data were used to obtain the viscoelastic properties of the material based on a 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Standard composition (90% PDMS polymer + 10% catalyst) of silicone RTV rubber (Silastic® S2) were used for preparing three samples for axial stress deformation and three samples for shear deformation. Comprehensive measurements of modulus of elasticity, shear modulus, loss factor, and both real and imaginary parts of Poisson’s ratio were determined for frequencies from 50 to 320 Hz in the linear deformation regime (at relative deformations 10?6 to 10?4) at temperature 25 °C. In order to improve measurement accuracy, an extrapolation of the obtained results to zero load mass was suggested. For this purpose measurements with several masses need to be done. An empirical requirement for the sample height-to-radius ratio to be more than 4 was found for stress measurements. Different combinations of the samples with different sizes for the shear and stress measurements exhibited similar results. The proposed method allows one to measure imaginary part of the Poisson’s ratio, which appeared to be about 0.04–0.06 for the material of the present study.  相似文献   

18.
Little attention has thus far been paid to the potential effect of solution composition on the hydrothermal crystallization of calcium sulfate whiskers prepared from flue-gas desulfurization (FGD) gypsum. When purified FGD gypsum was used as raw material, the morphology and phase structure of the hydrothermal products grown in pure water, H2SO4–H2O, NaCl–H2O, and H2SO4–NaCl–H2O solutions as well as the solubility of purified FGD gypsum in these solutions were investigated. The results indicate that calcium sulfate whiskers grow favorably in the H2SO4–NaCl–H2O system. When prepared using 10–70 g NaCl/kg gypsum −0.01 M H2SO4–H2O at 130 °C for 60 min, the obtained calcium sulfate whiskers had diameters ranging from 3 to 5 μm and lengths from 200 to 600 μm, and their phase structure was calcium sulfate hemihydrate (HH). Opposing effects of sulfuric acid and sodium chloride on the solubility of the purified FGD gypsum were observed. With the co-presence of sulfuric acid and sodium chloride in the reaction solution, the concentrations of Ca2+ and SO42− can be kept relatively stable, which implies that the crystallization of the hydrothermal products can be controlled by changing the concentrations of sulfuric acid and sodium chloride.  相似文献   

19.
Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50 °C. The average diameter of the microspheres is ∼850 nm. The microspheres consist of a core of diameter of ∼800 nm and nanorods of width ∼50 nm. The nanorods exist at the edge of the core. The Brunauer–Emmett–Teller surface area of the sea-urchin-shaped microspheres is 259.4 m2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 °C.  相似文献   

20.
To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号