首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This paper brings together a novel information representation model for use in signal processing and computer vision problems, with a particular algorithmic development of the Landweber iterative algorithm. The information representation model allows a representation of multiple values for a variable as well as an expression for confidence. Both properties are important for effective computation using multi-level models, where a choice between models will be implementable as part of the optimization process. It is shown that in this way the algorithm can deal with a class of high-dimensional, sparse, and constrained least-squares problems, which arise in various computer vision learning tasks, such as object recognition and object pose estimation. While the algorithm has been applied to the solution of such problems, it has so far been used heuristically. In this paper we describe the properties and some of the peculiarities of the channel representation and optimization, and put them on firm mathematical ground. We consider the optimization a convexly constrained weighted least-squares problem and propose for its solution a projected Landweber method which employs oblique projections onto the closed convex constraint set. We formulate the problem, present the algorithm and work out its convergence properties, including a rate-of-convergence result. The results are put in perspective with currently available projected Landweber methods. An application to supervised learning is described, and the method is evaluated in an experiment involving function approximation, as well as application to transient signals.  相似文献   

2.
In this paper we introduce an algorithm for the creation of polyhedral approximations for certain kinds of digital objects in a three-dimensional space. The objects are sets of voxels represented as strongly connected subsets of an abstract cell complex. The proposed algorithm generates the convex hull of a given object and modifies the hull afterwards by recursive repetitions of generating convex hulls of subsets of the given voxel set or subsets of the background voxels. The result of this method is a polyhedron which separates object voxels from background voxels. The objects processed by this algorithm and also the background voxel components inside the convex hull of the objects are restricted to have genus 0. The second aim of this paper is to present some practical improvements to the discussed convex hull algorithm to reduce computation time.  相似文献   

3.
This article investigates use of the Principle of Maximum Entropy for approximation of the risk-neutral probability density on the price of a financial asset as inferred from market prices on associated options. The usual strict convexity assumption on the market-price to strike-price function is relaxed, provided one is willing to accept a partially supported risk-neutral density. This provides a natural and useful extension of the standard theory. We present a rigorous analysis of the related optimization problem via convex duality and constraint qualification on both bounded and unbounded price domains. The relevance of this work for applications is in explaining precisely the consequences of any gap between convexity and strict convexity in the price function. The computational feasibility of the method and analytic consequences arising from non-strictly-convex price functions are illustrated with a numerical example.  相似文献   

4.
The aim of this paper is to study the isoperimetric problem with fixed volume inside convex sets and other related geometric variational problems in the Gauss space, in both the finite and infinite dimensional case. We first study the finite dimensional case, proving the existence of a maximal Cheeger set which is convex inside any bounded convex set. We also prove the uniqueness and convexity of solutions of the isoperimetric problem with fixed volume inside any convex set. Then we extend these results in the context of the abstract Wiener space, and for that we study the total variation denoising problem in this context.  相似文献   

5.
Vector optimization problems are a significant extension of multiobjective optimization, which has a large number of real life applications. In vector optimization the preference order is related to an arbitrary closed and convex cone, rather than the nonnegative orthant. We consider extensions of the projected gradient gradient method to vector optimization, which work directly with vector-valued functions, without using scalar-valued objectives. We provide a direction which adequately substitutes for the projected gradient, and establish results which mirror those available for the scalar-valued case, namely stationarity of the cluster points (if any) without convexity assumptions, and convergence of the full sequence generated by the algorithm to a weakly efficient optimum in the convex case, under mild assumptions. We also prove that our results still hold when the search direction is only approximately computed.  相似文献   

6.
A fast gradient method requiring only one projection is proposed for smooth convex optimization problems. The method has a visual geometric interpretation, so it is called the method of similar triangles (MST). Composite, adaptive, and universal versions of MST are suggested. Based on MST, a universal method is proposed for the first time for strongly convex problems (this method is continuous with respect to the strong convexity parameter of the smooth part of the functional). It is shown how the universal version of MST can be applied to stochastic optimization problems.  相似文献   

7.
In this paper, we introduce a new dual program, which is representable as a semidefinite linear programming problem, for a primal convex minimax programming problem, and we show that there is no duality gap between the primal and the dual whenever the functions involved are sum-of-squares convex polynomials. Under a suitable constraint qualification, we derive strong duality results for this class of minimax problems. Consequently, we present applications of our results to robust sum-of-squares convex programming problems under data uncertainty and to minimax fractional programming problems with sum-of-squares convex polynomials. We obtain these results by first establishing sum-of-squares polynomial representations of non-negativity of a convex max function over a system of sum-of-squares convex constraints. The new class of sum-of-squares convex polynomials is an important subclass of convex polynomials and it includes convex quadratic functions and separable convex polynomials. The sum-of-squares convexity of polynomials can numerically be checked by solving semidefinite programming problems whereas numerically verifying convexity of polynomials is generally very hard.  相似文献   

8.
We study the applicability of the Peaceman–Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is computable, then any cluster point of the sequence generated, if exists, will give a stationary point of the optimization problem. We also give sufficient conditions guaranteeing boundedness of the sequence generated. We then discuss one way to split the objective so that the proposed method can be suitably applied to solving optimization problems with a coercive objective that is the sum of a (not necessarily strongly) convex Lipschitz differentiable function and a proper closed function; this setting covers a large class of nonconvex feasibility problems and constrained least squares problems. Finally, we illustrate the proposed algorithm numerically.  相似文献   

9.
A Cutting Plane Algorithm for Linear Reverse Convex Programs   总被引:1,自引:0,他引:1  
In this paper, global optimization of linear programs with an additional reverse convex constraint is considered. This type of problem arises in many applications such as engineering design, communications networks, and many management decision support systems with budget constraints and economies-of-scale. The main difficulty with this type of problem is the presence of the complicated reverse convex constraint, which destroys the convexity and possibly the connectivity of the feasible region, putting the problem in a class of difficult and mathematically intractable problems. We present a cutting plane method within the scope of a branch-and-bound scheme that efficiently partitions the polytope associated with the linear constraints and systematically fathoms these portions through the use of the bounds. An upper bound and a lower bound for the optimal value is found and improved at each iteration. The algorithm terminates when all the generated subdivisions have been fathomed.  相似文献   

10.
Global optimization problems involving the minimization of a product of convex functions on a convex set are addressed in this paper. Elements of convex analysis are used to obtain a suitable representation of the convex multiplicative problem in the outcome space, where its global solution is reduced to the solution of a sequence of quasiconcave minimizations on polytopes. Computational experiments illustrate the performance of the global optimization algorithm proposed.   相似文献   

11.
We use asymptotic analysis to develop finer estimates for the efficient, weak efficient and proper efficient solution sets (and for their asymptotic cones) to convex/quasiconvex vector optimization problems. We also provide a new representation for the efficient solution set without any convexity assumption, and the estimates involve the minima of the linear scalarization of the original vector problem. Some new necessary conditions for a point to be efficient or weak efficient solution for general convex vector optimization problems, as well as for the nonconvex quadratic multiobjective optimization problem, are established.  相似文献   

12.
In this paper, a string matching scheme is proposed to inspect two-dimensional objects for dimensional and shape verification in industrial environment. This approach consists of two stages. First, the procedures of determining the invariant starting point for boundary tracing and locating the cornerpoints of a curved object for polygon approximation are derived. To speed up the process, an optimization-based unconstrained line search method is used to locate the cornerpoints of the polygon image of a curved object. These cornerpoints are then recorded as feature string. At last, the feature string for each tested object are utilized to find the exact correspondence to one of several model objects. In contrast to conventional matching methods, which requires translation and rotation of the tested image before matching, the proposed method proves to be computationally efficient for real-time applications.  相似文献   

13.
The aim of this paper is to develop an efficient algorithm for solving a class of unconstrained nondifferentiable convex optimization problems in finite dimensional spaces. To this end we formulate first its Fenchel dual problem and regularize it in two steps into a differentiable strongly convex one with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fast gradient method with the aim of accelerating the resulting convergence scheme. The theoretical results are finally applied to an l 1 regularization problem arising in image processing.  相似文献   

14.
《Computational Geometry》2005,30(2):129-144
A convex geometry is a combinatorial abstract model introduced by Edelman and Jamison which captures a combinatorial essence of “convexity” shared by some objects including finite point sets, partially ordered sets, trees, rooted graphs. In this paper, we introduce a generalized convex shelling, and show that every convex geometry can be represented as a generalized convex shelling. This is “the representation theorem for convex geometries” analogous to “the representation theorem for oriented matroids” by Folkman and Lawrence. An important feature is that our representation theorem is affine-geometric while that for oriented matroids is topological. Thus our representation theorem indicates the intrinsic simplicity of convex geometries, and opens a new research direction in the theory of convex geometries.  相似文献   

15.
Implementing the Nelder-Mead simplex algorithm with?adaptive parameters   总被引:1,自引:0,他引:1  
In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contraction, and shrink parameters depend on the dimension of the optimization problem. Our numerical experiments show that the new implementation outperforms the standard Nelder-Mead method for high dimensional problems.  相似文献   

16.
王斯琪  谢政  戴丽 《运筹学学报》2016,20(2):105-112
针对合作博弈核心和Shapley值的特点, 将最公平核心问题转化为带有两个变 量的可分离凸优化问题, 引入结构变分不等式的算子分裂方法框架, 提出了求解最公平核心的一种非精确平行分裂算法. 而且, 该算法充分利用了所求解问题的可行域的简单闭凸性, 子问题的非精确求解是容易的. 最后, 简单算例的数值实验表明了算法的收敛性和有效性.  相似文献   

17.
<正>1引言特征值问题在应用数学分支和工程中,尤其是在最优设计问题中,有很多的应用,所以特征值问题的最优化已经有了较为深入的研究,见在我们的研究当中,最优设计问题常常以一种指定载荷的设计下、能量的极小化问题的形式出现.在大多数关于最优设计的文章里面,我们更重视在一个固定载荷下条件下结构的最  相似文献   

18.
郭科  王涛  张有才 《运筹学学报》2010,24(3):127-140
黏性逼近方法在非扩张映射不动点问题的研究中扮演着重要的角色。提出了一类广义黏性逼近方法,在一定条件下,证明了该算法的收敛性.作为应用,将所得的收敛性结果应用于求解约束凸优化问题与双层优化问题。  相似文献   

19.
We consider the following basic geometric problem: Given , a 2‐dimensional black‐and‐white figure is ?far from convex if it differs in at least an ? fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ?far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity. We show that uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ?‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.  相似文献   

20.
A quadratic spline is a differentiable piecewise quadratic function. Many problems in the numerical analysis and optimization literature can be reformulated as unconstrained minimizations of quadratic splines. However, only special cases of quadratic splines have been studied in the existing literature and algorithms have been developed on a case-by-case basis. There lacks an analytical representation of a general or even convex quadratic spline. The current paper fills this gap by providing an analytical representation of a general quadratic spline. Furthermore, for a convex quadratic spline, it is shown that the representation can be refined in the neighborhood of a nondegenerate point and a set of nondegenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finitely convergent for a general convex quadratic spline. Finally, we study the relationship between the convexity of a quadratic spline function and the monotonicity of the corresponding linear complementarity problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general.This project was initiated when the first author was visiting the Technical University of Denmark and Erasmus University. The visit was partially funded by the Danish Natural Science Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号