首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
The drawing behavior of linear polyethylene homopolymers with weight-average molecular weights (M?w) from 101,450 to ca. 3,500,000 has been studied over the temperature range 75°C to the melting point. In all cases 1-cm gauge length samples were drawn in an Instron tensile testing machine at a constant cross-head speed of 10 cm/min. With the exception of the lowest molecular weight polymer, it was found that increasing the draw temperature led to substantial increases in the maximum draw ratio which could be achieved, and that this increased monotonically with increasing draw temperature. Measurements of the Young's modulus of the drawn materials showed, however, that the unique relationship between modulus and draw ratio previously established for drawing at 75°C was not maintained to the highest draw temperatures. The highest draw temperature at which this relation held was found to be strongly molecular weight dependent, increasing from ca. 80 to ca. 125°C when M?w increased from 101,450 to 800,000. In all cases conditions could be found for drawing samples to draw ratios of 20 or more with correspondingly large values of the Young's modulus.  相似文献   

2.
The drawing behavior of the ultra‐high molecular weight polyethylene (UHMW‐PE) melts has been studied by comparing the stress/strain curves for two types of samples as polymerized using conventional Ziegler and newer metallocene catalyst systems. Two UHMW‐PE samples, having the same viscosity average molecular weight of 3.3 × 106, but different molecular weight distribution, have been drawn from melt at special conditions. The sample films for drawing were prepared by compression molding of reactor powders at 180°C in the melt. Differences in the structural changes during drawing and resultant properties, ascribable to their broad or narrow molecular weight distribution, were estimated from tensile tests, SEM observations, X‐ray measurements and thermal analyses. The metallocene‐catalyzed sample having narrower molecular weight distribution, could be effectively drawn from the melt up to a maximum draw ratio (DR) of 20, significantly lower than that obtained for the Ziegler‐catalyzed sample, ∼ 50. The stress/strain curves on drawing were remarkably influenced by draw conditions, including draw temperature and rate. However, the most effective draw for both was achieved at 150°C and a strain rate of 5 min−1, independent of sample molecular weight distribution. The efficiency of drawing, as evaluated by the resultant tensile properties as a function of DR, was higher for the metallocene‐catalyzed sample having narrower molecular weight distribution. Nevertheless, the maximum achieved tensile modulus and strength for the Ziegler sample, 50–55 and 0.90 GPa, respectively, were significantly higher than those for the metallocene sample, 20 and 0.65 GPa, respectively, reflecting the markedly higher drawability for the former than the latter. The stress/strain behavior indicated that the origin of differences during drawing from the melt could be attributed to the ease of chain relaxation for the lower molecular weight chains in the melt. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1921–1930, 1999  相似文献   

3.
The technique of nitric acid etching followed by gel permeation chromatography (GPC) has been used to study the structure of ultrahigh-modulus linear polyethylene (LPE) tapes drawn to draw ratio λ of 20. For comparison, lower draw ratio (λ = 11) samples were also examined. The etching was carried out in fuming nitric acid at 60°C and the progress of the reaction was monitored by measuring weight loss and molecular weight distributions as a function of time over a period up to 25 days. Consistent with previous work by us and other workers, notably Porter and Peterlin and co-workers, the ultrahigh-modulus products exhibit an exceptional resistance to the acid attack, i.e., after 3 days their weight loss is still negligible while at lower draw ratios it could be as high as 30%. At longer times, however, the rate of weight loss becomes comparable for the two sets of samples, even if the absolute values are much smaller for the products of λ = 20. During the early stages of the etching treatment a rapid decrease in molecular weight and narrowing of the molecular weight distribution is observed in all cases. Eventually the molecular weight distribution becomes time independent, while the weight loss continues to increase. This stage coincides with the attack of the lateral surfaces of the crystals becoming the dominant process and it is considered that the observed molecular length distribution then reflects the distribution of crystal thicknesses. The values of the weight average crystal thickness derived from the GPC experiments (L?w) are in very good agreement with those obtained from wide-angle x-ray determinations. Furthermore the ratio of weight-average to number-average crystal thickness (L?w/L?n) is about 2 for the high draw (λ = 20) samples, i.e., the value predicted by the simple statistical model proposed by Gibson, Davies, and Ward for the structure of ultrahigh-modulus LPE. It is therefore concluded that the nitric acid etching/GPC technique can be used for reliable measurements of crystal size and crystal size distribution in ultraoriented LPE.  相似文献   

4.
Polytetramethylene oxide with a planar zig-zag structure similar to polyethylene can be obtained with narrow molecular weight distributions. The plastic deformation of samples differing in molecular weight, molecular weight distribution, crystallinity, and structure has been studied. The degree of crystallinity of the undeformed annealed samples, as studied by NMR and DSC, leads to a value of the enthalpy of melting ΔHm = 167 J g?1, supporting the lower of two previously reported values. The low natural draw ratios and low Young's modulus of the drawn samples, together with the effect of blending a small amount of high molecular weight material into a low molecular weight sample, highlight the role of the flexibility and of the high molecular weight tail of the distribution in the plastic deformation process. The stress required for the propagation of the neck and the tensile strength are found to be linear functions of, respectively, the natural and maximum draw ratio.  相似文献   

5.
The influence of initial polymer concentration in solution (c), weight-average molecular weight (Mω), and drawing temperature on the solid-state drawing behavior of linear polyethylenes was investigated. Optimum conditions, with respect to maximum attainable draw ratio, are observed in isothermal drawing experiments. Moreover, it is shown that high maximum attainable draw ratios can also be obtained upon multistage drawing of UHMW-PE (ultrahigh-molecular-weight polyethylene, Mω > 106 g/mol) gel films cast from concentrated solutions. The high maximum attainable draw ratio in combination with the high molecular weight (Mω > 106 g/mol) and polymer concentration (c = 10% w/v) is of particular interest because it results in tapes or fibers with a high Young's modulus (100 GPa) and tensile strength (2.5–3.5 GPa). It is also shown that the maximum attainable draw ratio of polyethylenes scales with the Bueche parameter (c · Mω) to the ?0.5 power. This experimental observation indicates that intermolecular interactions not only dominate the rheological properties of polyethylene melts and concentrated solutions, but also strongly influence the solid-state drawing behavior of linear polyethylenes.  相似文献   

6.
The shrinkage of commercial oriented poly(ethylene terephthalate) filaments was studied within the framework of the kinetic theory of rubberlike elasticity. Previous workers had found that the shrinkage and optical behavior of amorphous polymers could be satisfactorily explained in terms of this theory. Such an analysis is now applied to semicrystalline samples of moderate and high draw ratios (from 2× to 6×). It was found in this work that the thermal shrinkage force behavior as well as the optical anisotropy as a function of stretch can be explained in terms of the theory of rubberlike elasticity, if the following reasonable assumption is made: the average number of statistical segments per network chain in the noncrosslinked sample increases as a function of the draw ratio. A possible mechanism for such behavior is the relaxation of some of the chain entaglements due to the strain imposed externally on the fiber.  相似文献   

7.
The α relaxation of isotropic and drawn poly(vinyl alcohol) dried gel films was studied using dynamic mechanical analysis. The temperature of the relaxation Tα increased from 160°C in the isotropic gel to 220°C in a fiber drawn 19 ×. The relaxation, which is associated with the crystalline regions of the material, also decreased continuously in magnitude as drawing proceeded, although crystallinity increased. At draw ratios over 12 ×, the relaxation became difficult to resolve, and no relaxation was observed in fibers drawn over 19 ×. The melting points of the fibers increased with draw ratio, but not enough to account for the large change in Tα. Crystal thickness in the fiber direction also increased with draw ratio. An analogy is drawn to the case of polyethylene where crystal thickness has been found to control Tα. The absence of a resolvable α relaxation is one reason why it is difficult to draw poly(vinyl alcohol) gels to extremely high ratios.  相似文献   

8.
The crystal orientation of solid-state biaxially drawn solution-crystallized ultra-high-molecular weight polyethylene (UHMW-PE) film has been revealed from flat-plate wide-angle x-ray scattering (WAXS) patterns and interpreted in terms of crystal plasticity. A slightly drawn film (λ ≤ 3 × 3) possesses only a (100) planar orientation, whereas in a highly drawn film (λ ≥ 6 × 6), a mixed (100) and {110} planar orientation is present. Crystal deformation is found to proceed both by slip on (100) and {110} planes, resulting in a (100) texture in a similar way to crystal deformation in uniaxially drawn polyethylene and by {110} 〈110 〉 transverse slip and/or {310} twinning which results in a {110} texture. It is postulated that during transverse slip or twinning, the molecules deform without chain extension. As a consequence, neither the molecular draw ratio nor the tensile properties change significantly for macroscopic draw ratios above 10 in contrast to the data obtained for uniaxially drawn polyethylene.  相似文献   

9.
The shear dependence of the intrinsic viscosity and the conformation of high molecular weight polyisobutylene in dilute solutions of decahydronaphthalene under shear were determined simultaneously. Experimental variables investigated were the shear rate (0 to 2 × 103 sec?1), the molecular weight (1.0 × 107 to 1.7 × 107) and the polymer concentration (1.8 × 10?4 to 8.4 × 10?4 g/cc). Correlations allowing concentration and shear rate normalization for any one sample are described. Conformational extention ratios along the orientation direction of the deformed molecule to 1.42 and intrinsic viscosity ratios (sheared to zero shear) to 0.5 were observed.  相似文献   

10.
由Nd(oct)3(Nd)、Al(i-Bu)3(Al)和C4H9Cl(BCL)三组分组成稀土催化体系,催化苯乙烯(St)在环己烷溶剂中进行配位聚合,考察Al/Nd摩尔比、BCL/Nd摩尔比、陈化温度、陈化时间、催化剂用量、聚合温度与时间等因素对苯乙烯聚合、催化活性以及聚苯乙烯产物(PS)分子量与分子量分布的影响.当Al/Nd=8-12(摩尔比),BCL/Nd=5-25(摩尔比),Ta=40-50℃,ta=6-20 h,Tp=40-50℃时,可以得到高分子量聚苯乙烯,其中重均分子量可高达7.6×105.聚合产物中不溶于丁酮的聚苯乙烯的熔点高达268℃,主要含有间规结构聚苯乙烯和少量等规结构聚苯乙烯;偏光显微镜观察结果表明,可溶于丁酮的聚苯乙烯也是含有部分立构规整链段的聚合物.  相似文献   

11.
The drawing behavior of a series of linear polyethylene homopolymers with weight-average molecular weight (M?w) ranging from 67,800 to ~3,500,000 and variable distribution (M?w/M?n = 5.1?20.9) has been studied. Sheets were prepared by two distinct routes: either by quenching the molten polymer into cold water or by slow cooling below the crystallization temperature (~120°C) followed by quenching into cold water. When the samples (2 cm long) were drawn in air at 75°C using a crosshead speed of 10 cm/min it was found that for low M?w polymers the initial thermal treatment has a dramatic effect on the rate at which the local deformation proceeds in the necked region. At high M?w such effects are negligible. An important result was that comparatively high draw ratios (λ > 17) and correspondingly high Young's moduli could be obtained for a polymer with M?w as high as 312,000. It is shown how some of the structural features of the initial materials (mainly studied by optical microscopy, small-angle x-ray scattering and low-frequency laser Raman spectroscopy) can be interpreted in terms of the molecular weight and molecular weight distribution of the polymers. Although crystallization and morphology can be important at low M?w, it suggested that the concept of a molecular network which embraces both crystalline and noncrystalline material is more helpful in understanding the drawing behavior over the whole range of molecular weights.  相似文献   

12.
The shear creep and creep recovery behavior of narrow molecular weight distribution polystyrene samples of low molecular weight, 1.1 × 103, 3.4 × 103, and 1.57 × 104 are reported as a function of temperature, near and above the glass temperature. Time-temperature equivalence for the total creep compliance is found to be nonapplicable, and in fact the steady-state recoverable compliance, Je, is a strong function of temperature. The time-scale shift factors for the recoverable compliance are analyzed in the light of free volume theory. Viscosity data are presented for samples with molecular weights between 1.1 × 103 and 6.0 × 105. The temperature dependence of the characteristic time constant ηJe can be explained in terms of free volume concepts whereas that of viscosity η cannot. Effects of residual molecular weight heterogeneity are demonstrated.  相似文献   

13.
The flow curves of fractionated polydimethylsiloxanes of different molecular weights were obtained over a wide range of shear rates, from 3 × 10?1 to 4.3 × 106 sec?1, by use of a gas-driven capillary viscometer designed to decrease the experimental error in high shear rate region. Non-Newtonian flow can occur at molecular weights below the critical molecular weight Mc for the entanglement of polymer chain. The critical molecular weight Mc for the onset of the non-Newtonian flow is identical with that of the segment of viscous flow. For the polymer of molecular weights from Mc to Mc, the upper Newtonian viscosity increases with an increase in molecular weight. Above Mc, the upper Newtonian viscosity is almost independent of the molecular weight.  相似文献   

14.
We report viscometric data collected in a Couette rheometry on dilute, single‐solvent polystyrene (PS)/dioctyl phthalate (DOP) solutions over a variety of polymer molecular weights (5.5 × 105Mw ≤ 3.0 × 106 Da) and system temperatures (288 K ≤ T ≤ 318 K). In view of the essential viscometric features, the current data may be classified into three categories: The first concerns all the investigated solutions at low shear rates, where the solution properties are found to agree excellently with the Zimm model predictions. The second includes all sample solutions, except for high‐molecular‐weight PS samples (Mw ≥ 2.0 × 106 Da), where excellent time–temperature superposition is observed for the steady‐state polymer viscosity at constant polymer molecular weights. No similar superposition applies at a constant temperature but varied polymer molecular weights, however. The third appears to be characteristic of dilute high‐molecular‐weight polymer solutions, for which the effects of temperature on the viscosity curve are further complicated at high shear rates. The implications concerning the relative importance of hydrodynamic interactions, segmental interactions, and chain extensibility with increasing polymer molecular weight, system temperature, and shear rate are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 787–794, 2006  相似文献   

15.
The morphological character of uniaxially oriented poly(ethylene terephthalate) (PET) films was investigated as a function of draw ratio. Dynamic mechanical, infrared, and crystallite-size measurements were made on the samples. In addition, selective degradation experiments and molecular weight determinations were employed. The dynamic mechanical measurements indicated a sharp decrease in irregular folds for draw ratios of 3.0 and higher, which also coincided with the essentially complete disappearence of regular folds (from the 988 cm?1 band in the infrared spectra) in unannealed samples. Infrared studies of drawn samples annealed under different conditions gave evidence in support of a structure in which the chains are stretched out. Apparent crystallite-size measurements showed a sudden increase in length of the crystals in the direction of the draw beyond a draw ratio of 3.0. Molecular weight measurements showed a large increase in average chain length in the residue after selective degradation of amorphous material and folds; undrawn and slightly drawn samples gave a much lower M n. Based on these observations, it is postulated that for higher draw ratios and present drawing conditions, the crystals are of the straight chain type, somewhat similar to the fringed-micelle crystal concept.  相似文献   

16.
Measurements of flow birefringence of cellulose tricarbanilates were carried out on nine fractions (0.27 × 105 < M ≤ 12 × 105) in a temperature range of 55–110°C, with benzophenone as a matching solvent (dn/dc = 0). The ratio of Maxwell constant to intrinsic viscosity, which has been found to be independent of molecular weight for the limiting case of Gaussian molecules, is successfully interpreted as a function of molecular weight in terms of the recent theory of Gotlib and Svetlov (based on the wormlike chain model of Kratky and Porod). From the measurements at 55°C a number of 36.6 monomer units per random link is deduced. This is in accord with results of small-angle x-ray scattering. For the extinction angle curves a clear transition is observed from rodlike to statistical molecules when the molecular weight is increased. At high molecular weights the master curves obtained for anionic polystyrenes and cellulose tricarbanilates coincide. Implications of this observation on the kinetic stiffness of the cellulose tricarbanilate chain are discussed. The intrinsic viscosity-molecular weight relationship is considered. From a comparison with the results of the theory of Eizner and Ptitsyn it is concluded that the cellulose tricarbanilate chain must be highly solvated in benzophenone.  相似文献   

17.
The influence of molecular weight and temperature on the tensile drawing behavior of polypropylene has been studied, with particular reference to the production of ultra-high-modulus oriented materials. It has been shown that the optimum draw temperature is molecular weight independent to a good approximation, and that high-modulus products can be obtained for M?w in the range 180,000–400,000, the highest modulus being achieved for polymer with M?w = 181,000. As in the case of linear polyethylene, under optimum drawing conditions the Young's modulus relates only to the draw ratio. Low-temperature moduli as high as 25–27 GPa were recorded, which compare favorably with a previously reported value of 42 GPa for the crystal-lattice modulus. Although the drawing behaviour of the samples studied appeared comparatively insensitive to molecular weight, some of the properties of the draw materials, notably melting point and shrinkage at high temperature, showed a wide range of behavior.  相似文献   

18.
Drawn PE of different draw ratios (ranging from 1 to 25) and thermal treatment (annealing temperature 80, 100, 110, 120, 127°C.) was treated with fuming nitric acid at 80°C. Weight loss, molecular weight, elastic modulus, and thermograms were measured for annealed and unannealed samples as a function of the treatment time and draw ratio. As a consequence of the preferential oxidation of the noncrystalline portions, there occurs initially a high rate of weight loss and a steep drop in molecular weight, followed by a lower rate of weight loss at nearly constant molecular weight. The elastic modulus stays practically constant up to the moment where the brittleness of the sample prevents further measurement. During the later period the thermograms exhibit one melting peak during the first melting. The remelt of the same sample, however, has two melting peaks with a relative intensity independent of the treatment time. That the two melting peaks are caused by two components of different molecular weights present in the sample is substantiated by fractionation. At very high annealing temperature (127°C.), two peaks appear, not only in the first melting curve of the etched sample, but also in the melting curve of the unetched material. Such an effect is the consequence of partial melting during annealing followed by new crystallization during cooling the sample to room temperature. The findings are related to the morphology of the drawn material under the assumption of preferential scission of chain loops in the amorphous-crystalline sandwich layer model.  相似文献   

19.
The possibility of evaluating with acceptable accuracy the composition of a two-polymer mixture which is well separated by GPC, was studied by using mixtures of high molecular weight polybutadiene (M?w = 4.5 × 105) and low molecular weight polyiso-butylene (M?n in the range of 103). It was concluded that a satisfactory evaluation of the composition of a polymer mixture can be achieved, provided that the variations of the refractive index with the molecular weight are taken into account for the low molecular weight polymer (the polyisobutylene).  相似文献   

20.
The temperature ΘA2 at which the second virial coefficient A2 is zero for ring polystyrenes is 28.5°C in cyclohexane, independent of molecular weight in the range 2 × 104 to 4.5 × 105. This cannot be explained solely by the Candau–Rempp–Benoit theory, which takes into account the effect of segment density on ΘA2 The radius of gyration of a ring is found to be approximately one-half that of a linear polymer with the same molecular weight. The intrinsic viscosities [η] and intrinsic translational friction coefficients [f] of ring polystyrenes with molecular weights ranging from 7 × 103 to 4.5 × 105 have been measured in cyclohexane at 34.5°C (Θ, the Flory theta temperature for linear polystyrenes) and in toluene (a good solvent). The results are compared with those for linear polystyrene. It is found that the Mark–Houwink exponent is less than one-half in cyclohexane at Θ. In toluene it is 0.67 compared to 0.73 for linear polystyrene. The hydrodynamic measurements suggest that large rings are less expanded than the linear polymers with the same molecular weight, contrary to many predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号