首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
采用小幅低频振荡和界面张力弛豫技术, 考察了疏水缔合水溶性聚丙烯酰胺(HMPAM)在正癸烷-水界面上的扩张黏弹性质, 研究了不对称Gemini表面活性剂C12COONa-p-C9SO3Na对其界面扩张性质的影响. 研究发现, 疏水链段的存在, 使HMPAM在界面层中具有较快的弛豫过程, 扩张弹性显示出明显的频率依赖性. 表面活性剂分子可以通过疏水相互作用与聚合物的疏水嵌段在界面上形成类似于混合胶束的特殊聚集体. 表面活性剂分子与界面聚集体之间存在快速交换过程, 可以大大降低聚合物的扩张弹性. 同时, 聚合物分子链能够削弱表面活性剂分子长烷基链之间的强相互作用, 导致混合吸附膜的扩张弹性远低于单独表面活性剂吸附膜.  相似文献   

2.
驱油体系化学剂间相互作用对界面吸附膜的影响   总被引:1,自引:0,他引:1  
采用界面张力弛豫技术研究了不对称Gemini表面活性剂C12COONa-p-C9SO3Na、部分水解聚丙烯酰胺Mo-4000、疏水缔合水溶性聚丙烯酰胺(HMPAM)等驱油体系化学剂在癸烷/水界面上的扩张流变性质,考察了不同离子强度、不同类型电解质对体系界面流变性质的影响,计算得到界面扩张弹性模量和粘性模量的全频率谱,并通过归一化方法(cole-cole图)探讨了界面吸附膜的弛豫过程。研究发现,界面膜内分子重排和界面与体相间分子扩散交换是影响膜性质的主要弛豫过程。表面活性剂体相浓度增大有利于界面分子重排过程,而低频有利于扩散交换过程;不同结构聚合物以及不同离子强度、不同类型电解质对表面活性剂吸附膜有不同的影响。  相似文献   

3.
表面活性剂对驱油聚合物界面剪切流变性质的影响   总被引:1,自引:0,他引:1  
利用双锥法研究了表面活性剂十二烷基苯磺酸钠(SDBS)和十六烷基三甲基溴化铵(CTAB)对油田现场用部分水解聚丙烯酰胺(PHPAM)和疏水改性聚丙烯酰胺(HMPAM)溶液的界面剪切流变性质的影响,实验结果表明:HMPAM分子通过疏水作用形成界面网络结构,界面剪切复合模量明显高于PHPAM.SDBS和CTAB通过疏水相互作用与HMPAM分子中的疏水嵌段形成聚集体,破坏界面网络结构,剪切模量随表面活性剂浓度增大明显降低.同时,界面膜从粘性膜向弹性膜转变.低SDBS浓度时,少量SDBS分子与PHPAM形成混合吸附膜,界面膜强度略有升高;SDBS浓度较高时,界面层中PHPAM分子被顶替,吸附膜强度开始减弱.阳离子表面活性剂CTAB通过静电相互作用中和PHPAM分子的负电性,造成聚合物链的部分卷曲,从而降低界面膜强度.弛豫实验结果证实了表面活性剂破坏HMPAM网络结构的机理.  相似文献   

4.
疏水缔合聚丙烯酰胺与双子表面活性剂的相互作用   总被引:4,自引:0,他引:4  
制备了一种脂肪酸酯双磺酸盐型双子表面活性剂, 利用粘度法、界面张力法和原子力显微镜研究了疏水缔合聚丙烯酰胺与双子表面活性剂在溶液中的相互作用. 实验结果表明: 疏水缔合聚丙烯酰胺在溶液中能够通过自组装形成疏水微区并发展成网络结构, 疏水微区与表面活性剂在溶液中能形成混合胶束; 当一定量的表面活性剂加入时, 对疏水缔合聚丙烯酰胺的自组装起促进作用, 而过多双子表面活性剂的加入又会对聚合物分子的自组装起抑制作用, 从而显著影响疏水缔合聚丙烯酰胺的溶液性质, 随着表面活性剂浓度的增加, 聚合物溶液粘度先增加、再降低; 同时, 疏水缔合聚丙烯酰胺对双子表面活性剂的界面性能也有较大影响, 聚合物的加入使双子表面活性剂降低油/水界面张力的能力下降, 油/水界面张力达到平衡所需时间延长.  相似文献   

5.
戴玉华  吴飞鹏  李妙贞  王尔鑑 《化学学报》2005,63(14):1329-1334
采用粘度法、荧光探针和透射电镜研究了新型疏水缔合聚合物P(AM/POEA)和表面活性剂SDS和CTAB在水溶液中的相互作用. 聚合物P(AM/POEA)结构中, 疏水体(2-苯氧乙基丙烯酸酯)呈嵌段状无序地分布在聚丙烯酰胺主链上. 这类聚合物很容易和表面活性剂相互作用, 通过疏水缔合, 形成混合胶束状聚集体, 导致溶液粘度剧增. 随聚合物溶液中SDS的加入, 溶液粘度发生大幅度起伏变化, 出现最大值. 粘度最大值对应的表面活性剂浓度cS,max位于表面活性剂CMC附近, 并发现它的位置不随聚合物微结构而变化. 然而它们缔合作用的增粘程度却与聚合物疏水体含量XH及疏水嵌段尺寸NH有关. 在实验浓度范围内, XHNH愈大, 溶液的粘度越高. 此外用透射电镜直接观察到聚合物/表面活性剂体系中聚集体的交联结构形貌.  相似文献   

6.
采用小幅低频振荡和界面张力弛豫技术, 研究了部分水解聚丙烯酰胺(Mo-4000)和阴离子表面活性剂2-丙基-4,5-二庚基苯磺酸钠(377)体系在癸烷/水界面上的扩张黏弹性质, 并考察了电解质对体系界面流变性质的影响. 研究结果发现, 低表面活性剂浓度时, 聚合物的加入大大降低了扩张模量; 而高表面活性剂浓度时, 聚合物的存在导致了界面膜更接近弹性膜. 一方面电解质压缩双电层, 增加界面膜的紧密程度, 造成高频条件下扩张模量增大; 另一方面, 电解质增强表面活性剂分子在界面与体相间的扩散交换作用, 增大了扩张模量的频率依赖性, 造成低频条件下扩张模量降低.  相似文献   

7.
利用界面扩张流变技术,研究了两性咪唑类离子液体表面活性剂1-磺丙基-3-十二烷基咪唑内盐(C12imSP)的界面聚集行为,探讨传统表面活性剂十二烷基硫酸钠(SDS)对C12imSP界面聚集行为的影响机制。 结果表明,少量SDS的加入可以填补界面上疏松的C12imSP分子间的空位,界面上形成表面活性剂混合吸附膜,界面张力显著降低;提高SDS的浓度,其分子从体相向界面层的扩散交换占优势,界面层分子逐渐达到饱和吸附,此后体系中有混合胶束形成。 体相胶束中富集的SDS分子对C12imSP分子的“收纳”作用及进一步的“挽留”作用,加之C12imSP分子本身相对较大的空间位阻效应导致界面上的C12imSP分子一旦通过扩散作用被交换至体相,其很难再回复到表面层,即界面膜以SDS分子为主。 通过调节体系中SDS的含量,可以实现对混合体系SDS/C12imSP/NaCl(0.1 mol/L)界面聚集行为的调控,进而实现对界面膜性质的调控。  相似文献   

8.
采用界面扩张流变技术研究了季铵盐偶联表面活性剂C12-(CH2)2-C12·2Br(Gemini12-2-12)及其与离子液体表面活性剂溴化1-十二烷基-3-甲基咪唑(C12mim Br)复配体系的动态界面张力、扩张流变性质和界面弛豫过程等,探讨了C12mim Br对C12mim Br/Gemini12-2-12混合体系界面性质的影响及C12mim Br对Gemini12-2-12界面聚集行为影响的机制.结果表明,随着离子液体表面活性剂的不断引入,体系界面吸附达到平衡所需的时间逐渐缩短,扩张模量和相角明显降低,界面吸附膜由粘弹性膜转变为近似纯弹性膜;同时,界面及其附近的弛豫过程也发生显著变化,慢弛豫过程消失,快弛豫过程占主导地位,且离子液体浓度越高,快弛豫的贡献越大.这些界面性质的变化主要归因于离子液体表面活性剂C12mim Br参与界面形成及两表面活性剂在界面竞争吸附的结果.少量离子液体表面活性剂C12mim Br的加入可以填补疏松的Gemini12-2-12界面上的空位,形成混合界面吸附膜.随着C12mim Br含量的增加,嵌入界面的C12mim Br分子数不断增多,导致界面上相互缠绕的Gemini12-2-12烷基链"解缠",在体相和界面分子扩散交换的过程中"解缠"的Gemini12-2-12分子从界面上解吸回到体相,与此同时,C12mim Br分子相对较小的空间位阻及较强的疏水作用促使其优先扩散至界面进而取代Gemini12-2-12分子,最终界面几乎完全被C12mim Br分子所占据.  相似文献   

9.
扩张流变法研究表面活性剂在界面上的聚集行为   总被引:3,自引:0,他引:3  
近年发展起来的界面流变测定技术在研究界面性质方面具有许多独特之处.本文结合我们的工作,总结了近年来有关该技术在表面活性剂界面聚集行为研究中的应用,讨论了扩张频率、表面活性剂浓度及疏水链长、无机盐和温度对表面扩张流变行为的影响,同时探讨了小分子表面活性剂与高分子表面活性剂表面扩张流变行为的区别以及小分子表面活性剂在气/液界面与液/液表面的扩张流变性的差异.大量研究表明,借助于界面流变性的测定不仅可以研究发生在界面上和界面附近的微观弛豫过程,而且可以探讨界面上超分子聚集体的形成,进而为乳状液和泡沫等分散体系的稳定性提供依据.  相似文献   

10.
利用悬挂滴方法研究了疏水改性聚丙烯酰胺(HMPAM)对胜利采油厂高温高盐油藏采出原油中酸性活性组分和沥青质界面膜扩张流变性质的影响,考察了不同活性组分浓度条件下的界面扩张流变行为.实验结果表明:1750mg·L-1HMPAM能够在界面上形成网络结构,界面扩张模量数值高达100mN·m-1左右;油相中的酸性组分随着老化时间增加吸附到界面上,与HMPAM分子的疏水改性部分形成聚集结构,一方面通过快速的扩散交换过程大大降低扩张模量,另一方面通过与疏水改性部分的相互作用加强HMPAM分子间的缔合强度,增强网络结构的弹性.沥青质分子尺寸相对较大,分子间存在氢键等较强的相互作用,造成沥青质界面聚集体和HMPAM形成的网络结构共同决定界面膜性质,混合膜的扩张模量较单独HMPAM体系仅略有降低.  相似文献   

11.
The interfacial dilational viscoelastic properties of hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2‐ethylhexyl acrylate (EHA) (<1.0 mol%) with a hydrolyzed degree of about 1.5–2.0% at the octane‐water interfaces were investigated by means of two methods: the interfacial tension response to sinusoidal area variations (oscillating barriers method) and the relaxation of an applied stress (interfacial tension relaxation method) respectively. The influence of cationic surfactant cetyl trimethylammonium bromide (CTAB) on the dilational viscoelastic properties was studied. The results obtained by oscillating barriers method showed that dilational modulus decreased moderately with the increase of CTAB concentration. The results obtained by interfacial tension relaxation measurements showed that two main relaxation processes exist in the interface at 7,000 ppm polymer concentration: one is the fast process involving the exchange of hydrophobic blocks between the proximal region and distal region in the interface; the other is the slow relaxation process involving conformational changes of polymer chain in the interface. By adding CTAB, the slow process changed obviously due to the strong electrostatic interaction between oppositely charged surfactant and hydrolyzed part of polymer chain. Only when the CTAB concentration was close to the “equal charge point,” the associations formed mainly by the hydrophobic interaction like that in SDS/polymer system appeared and the characteristic time of fast process decreased obviously. The information of relaxation processes obtained from interfacial tension relaxation measurements can explain the results from dilational viscoelasticity measurements very well.  相似文献   

12.
In our previous work (Macromolecules 2004, 37:2930), we found that the hydrophobic blocks of polyacrylamide modified with 2‐phenoxylethyl acrylate (POEA) and anionic surfactant sodium dodecyl sulfate (SDS) may form mixed associations at octane/water interface. However, the process involving the exchange of surfactant molecules between monomers and mixed associations in interface is so fast that we cannot obtain its characteristic time. In this article, the interfacial dilational viscoelastic properties of another hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2‐ethylhexyl acrylate (EHA) (<1.0 mol%) at the octane‐water interfaces were investigated by means of oscillating barriers method and interfacial tension relaxation method respectively. The influences of anionic surfactant SDS and nonionic surfactant Triton X‐100 on the dilational viscoelastic properties of 7000 ppm polymer solutions were studied. The results showed that the interaction between P(AM/2‐EHA) and SDS was similar to that of P(AM/POEA) and SDS. Moreover, we got the relaxation characteristic time of the fast process involving the exchange of s Triton X‐100 molecules between monomers and mixed associations.

We also found that the interfacial tension response of hydrophobically associating water‐soluble copolymers to the sinusoidal oscillation of interfacial area at low bulk concentration is as same as that of the typical surfactants: the interfacial tension decreases with the decrease of interfacial area because of the increase of interfacial active components. However, the interfacial tension increases with the decrease of interfacial area at 7000 ppm P(AM/2‐EHA), which is believed to be correlative with the structure of absorbed film. The results of another hydrophobically associating polymer P(AM/POEA) and polyelectrolyte polystyrene sulfonate (PSS) enhanced our supposition. The phase difference between area oscillation and tension oscillation has also been discussed considering the apparent negative value.  相似文献   

13.
The dilational viscoelastic properties of hydrophobically modified partly hydrolyzed polyacrylamide and anionic surfactants (4,5-diheptyl-2-propylbenzene sulfonate and gemini surfactant C12COONa-p-C9SO3Na) in the absence or presence of electrolyte have been investigated at the decane–water interface by means of longitudinal method and the interfacial tension relaxation method. Experimental results show that at low surfactant concentration, the increase of the dilational modulus by the addition of surfactant molecules at low frequency might be explained by the mix-adsorption of the polymer chains and surfactant molecules. At the same time, polymer chain could sharply decrease the dilational modulus of surfactant film mainly due to the weakening of the strong interactions among long alkyl chains in surfactant molecules. At high surfactant concentration, the addition of surfactant molecules can decrease the dilational modulus of polymer solution due to the fast process involving in the exchange of surfactant molecules between the interface and the mixed complex formed by surfactant molecules and hydrophobic micro-domains. The added electrolyte, which results in screening of electrostatic interactions between the ionized groups, generally increases the frequency dependence of the interfacial dilational modulus. The data obtained on the relaxation processes via interfacial tension relaxation measurements can explain the results from oscillating barriers measurements very well.  相似文献   

14.
The micellar dependencies of the photophysical properties of benoxaprofen (BXP), a 2-phenyl benzoxazole derivative, have been investigated using fluorescence spectroscopy and laser flash photolysis techniques. The fluorescence of BXP in aqueous solution has been observed to be remarkably quenched upon addition of a surfactant, cetyltrimethyl ammonium bromide (CTAB) or Triton X-100, in contrast to its enhancement in sodium dodecyl sulfate (SDS) micellar solution. Time-resolved fluorescence measurements show that the fluorescence decays biexponentially in the micellar solution, indicating the relaxation of micellar environments surrounding the excited BXP. The major component of fluorescence lifetimes in CTAB or Triton X-100 micellar phase is even shorter (330–427ps) than in SDS micellar phase (731 ps). The nonradiative decay constants are significantly larger (ca 3.0 times 109 s?1) in the CTAB or Triton X-100 micellar phase than in SDS micelles by a factor of ca 10. The major nonradiative decay is interpreted to be the internal conversion due to nuclear geometric change of BXP in the first excited singlet state. This is consistent with the observation that the quantum yields of intersystem crossing are very low (less than 0.01) in the micellar solutions as determined by the laser flash photolysis technique. The laser-induced transient absorption spectrum of BXP in CTAB or Triton X-100 micellar solution shows that the decay kinetics of the transients in CTAB or Triton X-100 are significantly different from first order kinetics in SDS.  相似文献   

15.
The dilational viscoelastic properties of partly hydrolyzed polyacrylamide (HPAM) and surfactant (C12COONa-p-C9SO3Na) in the absence or presence of electrolyte were investigated at the decane–water interface by means of longitudinal method and the interfacial tension relaxation method. The polymer plays different roles in influencing the structure of HPAM–surfactant mix-adsorbed layer at different surfactant concentration. At low surfactant concentration, the addition of polymer could sharply decrease the dilational elasticity mainly due to the weakening of the “entanglement” among long alkyl chains in surfactant molecules, while the addition of the polymer may enhance the dilational elasticity due to the slow diffusivity of the polymer chains at higher surfactant concentration. And the added electrolyte, which results in screening of electrostatic interactions between the ionized groups, generally decreases the interfacial dilational elasticity and increases the dilational viscosity. The data obtained on the relaxation processes via interfacial tension relaxation measurement can explain the results from dilational viscoelasticity measurements very well.  相似文献   

16.
The interfacial dilational viscoelastic properties of hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2-phenoxylethyl acrylate (POEA) (<1.0 mol%) at the octane-water interfaces were studied by means of the interfacial tension relaxation method. The dependencies of interfacial dilational elasticity and viscous component on the dilational frequency were investigated. The interaction of hydrophobically associating block copolymer [P(AM/POEA)] with sodium dodecyl sulfate (SDS) has been explored. The results show that at lower frequency, the dilational elasticity for different concentration copolymer is close to zero; at higher frequency, the dilational elasticity shows no change with increased frequency; At moderate frequency (10(-3)-1 Hz), the dilational elasticity decreased with a decrease in the dilational frequency. The results show that the hydrophobic groups of [P(AM/POEA)] chains can be associated by inter- or intrachain liaisons in water solution. The dilational viscous component for P(AM/POEA) comes forth a different maximum value at different frequencies when the polymer concentration is different. It is generally believed that the dilational viscous component reflects the summation of the various microscopic relaxation processes at and near the interface and different relaxation processes have different characteristic frequencies. The spectrum of dilational viscous component may appear more than once maximum values at different frequencies. The influence of SDS on the limiting dilational elasticity and viscous component for polymer solution was elucidated. For 5000 ppm polymer solution, the limiting dilational elasticity decreased with an increase in SDS concentration. The dilational viscous component passed through a maximum value with a rise in the dilational frequency, which appeared at different frequency when SDS concentration is different; and the higher is the concentration, the lower is the dilational frequency. It can be explained that macromolecules may be substituted by SDS molecules in the interface and the interaction of molecules decrease, which makes the limiting dilational elasticity decrease. For 200 ppm polymer solution, the limiting dilational elasticity increased firstly and then decreased with SDS concentration increasing. This may be explained that the interfacial polymer concentration is so low that SDS molecules absorbed in the interface dominate dilational properties of the interfacial film even at very low SDS concentration. However, SDS molecules can gradually substitute the polymer molecules in the interface with a rise in SDS concentration, which results in the decrease in the limiting dilational elasticity.  相似文献   

17.
The dilational properties of partly hydrolyzed polyacrylamide (HPAM) and 4,5-diheptyl-2-propylbenzene sulfonate (377) mixed systems in the absence or presence of electrolyte or oleic acid at the oil-water interface have been described by means of the oscillating barriers method and the interfacial tension relaxation method. The polymer plays different roles in influencing the nature of polymer-surfactant adsorbed layers at different surfactant concentrations. At low surfactant concentration, the addition of polymer perhaps weakens the “entanglement” of long alkyl chains, which decreases strikingly the dilational modulus of the adsorbed layer. At high surfactant concentration, the addition of the polymer increases the dilational modulus due to the hydrophobic interactions between polymer and surfactant molecules. On the case of adding electrolyte, the frequency dependence of dilational modulus increases due to the enhancement of exchange process of surfactant molecules and bivalent cation has more obvious effect than Na ion. Oleic acid plays dual roles in controlling interfacial dilational properties of mixed adsorption films: a small quantity of oleic acid increases the dilational modulus by forming densely packed mixed adsorption layer with surfactant molecules, while the superfluous addition of oleic acid could decrease the dilational modulus mainly due to the weakening of the “entanglement” among long alkyl chains in surfactant molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号