首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A research effort is undertaken to understand the mechanism of metal release from, e.g., inhaled metal particles or metal implants in the presence of proteins. The effect of protein adsorption on the metal release process from oxidized chromium metal surfaces and stainless steel surfaces was therefore examined by quartz crystal microbalance with energy dissipation monitoring (QCM-D) and graphite furnace atomic absorption spectroscopy (GFAAS). Differently charged and sized proteins, relevant for the inhalation and dermal exposure route were chosen including human and bovine serum albumin (HSA, BSA), mucin (BSM), and lysozyme (LYS). The results show that all proteins have high affinities for chromium and stainless steel (AISI 316) when deposited from solutions at pH 4 and at pH 7.4 where the protein adsorbed amount was very similar. Adsorption of albumin and mucin was substantially higher at pH 4 compared to pH 7.4 with approximately monolayer coverage at pH 7.4, whereas lysozyme adsorbed in multilayers at both investigated pH. The protein-surface interaction was strong since proteins were irreversibly adsorbed with respect to rinsing. Due to the passive nature of chromium and stainless steel (AISI 316) surfaces, very low metal release concentrations from the QCM metal surfaces in the presence of proteins were obtained on the time scale of the adsorption experiment. Therefore, metal release studies from massive metal sheets in contact with protein solutions were carried out in parallel. The presence of proteins increased the extent of metals released for chromium metal and stainless steel grades of different microstructure and alloy content, all with passive chromium(III)-rich surface oxides, such as QCM (AISI 316), ferritic (AISI 430), austentic (AISI 304, 316L), and duplex (LDX 2205).  相似文献   

2.
Summary A catalytic system was obtained by impregnation with platinum of thin alumina films electrochemically deposited on stainless steel. The composition, morphology and structure of the Pt/Al2O3/SS and Pt/CeO2/Al2O3/SS samples were characterized by XPS, SEM and BET. Catalytic tests of the samples were performed in a stoichiometric gas mixture.  相似文献   

3.
In this paper, we demonstrate the first use of a catecholic initiator for surface-initiated polymerization (SIP) from metal surfaces to create antifouling polymer coatings. A new bifunctional initiator inspired by mussel adhesive proteins was synthesized, which strongly adsorbs to Ti and 316L stainless steel (SS) substrates, providing an anchor for surface immobilization of grafted polymers. Surface-initiated atom transfer radical polymerization (SI-ATRP) was performed through the adsorbed biomimetic initiator to polymerize methyl methacrylate macromonomers with oligo(ethylene glycol) (OEG) side chains. X-ray photoelectron spectroscopy, surface FT-IR, and contact angle analysis confirmed the sequential grafting of initiator and polymer, and ellipsometry indicated the formation of polymer coatings of up to 100 nm thickness. Cell adhesion experiments performed with 3T3-Swiss albino fibroblasts showed substantially reduced cell adhesion onto polymer grafted Ti and 316L SS substrates as compared to the unmodified metals. Moreover, micropatterning of grafted polymer coatings on Ti surfaces was demonstrated by combining SI-ATRP and molecular assembly patterning by lift-off (MAPL), creating cell-adhesive and cell-resistant regions for potential use as cell arrays. Due to the ability of catechols to bind to a large variety of inorganic surfaces, this biomimetic anchoring strategy is expected to be a highly versatile tool for polymer thin film surface modification for biomedical and other applications.  相似文献   

4.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

5.
Summary A catalytic system was obtained by impregnation with platinum of thin alumina films electrochemically deposited on stainless steel. The composition, morphology and structure of the Pt/Al2O3/SS and Pt/CeO2/Al2O3/SS samples were characterized by XPS, SEM and BET. Catalytic tests of the samples were performed in a stoichiometric gas mixture.  相似文献   

6.
This work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) catalysts by supporting monolayer (ML) amounts of precious metals on transition metal carbide substrates. The metal component includes platinum (Pt), palladium (Pd), and gold (Au); the low-cost carbide substrate includes tungsten carbides (WC and W(2)C) and molybdenum carbide (Mo(2)C). As a platform for these studies, single-phase carbide thin films with well-characterized surfaces have been synthesized, allowing for a direct comparison of the intrinsic HER activity of bare and Pt-modified carbide surfaces. It is found that WC and W(2)C are both excellent cathode support materials for ML Pt, exhibiting HER activities that are comparable to bulk Pt while displaying stable HER activity during chronopotentiometric HER measurements. The findings of excellent stability and HER activity of the ML Pt-WC and Pt-W(2)C surfaces may be explained by the similar bulk electronic properties of tungsten carbides to Pt, as is supported by density functional theory calculations. These results are further extended to other metal overlayers (Pd and Au) and supports (Mo(2)C), which demonstrate that the metal ML-supported transition metal carbide surfaces exhibit HER activity that is consistent with the well-known volcano relationship between activity and hydrogen binding energy. This work highlights the potential of using carbide materials to reduce the costs of hydrogen production from water electrolysis by serving as stable, low-cost supports for ML amounts of precious metals.  相似文献   

7.
The adsorption of β-lactoglobulin to stainless steel and its subsequent removal were followed using in situ null ellipsometry. The influence of the surface pretreatment on the protein removal by the surfactant SDS and by sodium hydroxide was studied. All surfaces were precleaned in strongly alkaline solution. Some surfaces received no further pretreatment, while others were either passivated in nitric acid or plasma-cleaned prior to experiments. Stainless steel surfaces subjected to different surface pretreatments showed considerable differences in cleaning behavior. Cleaning, using NaOH, of surfaces which had been precleaned with alkali only or with plasma resulted in practically complete β-lactoglobulin removal. In contrast, appreciable amounts of protein remained on passivated stainless steel. Protein removal by SDS was limited and comparable for all three surface pretreatments investigated. Only minor effects on the protein adsorption tendency were observed. The amounts of β-lactoglobulin adsorbed tended to be somewhat lower on the passivated surfaces.  相似文献   

8.
Nanoparticles of Pt were successfully electrodeposited onto polycarbazole (PCz) film on a stainless steel (SS‐PCz‐Pt) by chronocoulometry (0.2 C). For comparative purposes, Pt particles were deposited into stainless steel (SS‐Pt) under the same condition. Fourier transform infrared spectroscopy (FT‐IR) results confirmed PCz exists in the SS‐PCz‐Pt composite electrode. X‐ray photoelectron spectroscopy (XPS) results indicated that PCz of SS‐PCz can interact easily with Pt particles. The crystalline behavior and morphology of SS‐PCz‐Pt and SS‐Pt were determined by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and Transmission Electron Microscopy (TEM). The TEM results indicated that Pt particles disperse more uniformly into the nanosheets of polycarbazole than those of SS film. Catalytic activity and stability for the oxidation of methanol were studied by using cyclic voltammetry and chronoamperometry. A high catalytic current for methanol oxidation (8.04 mA cm?2 mg?1) was found for the SS‐PCz‐Pt electrode in comparison to SS‐Pt electrode (5.01 mA cm?2 mg?1) at about 0.6 V (vs. Ag/AgCl).  相似文献   

9.
Adsorption of cinchonidine on monometallic Au and bimetallic Pt-Au and Pd-Au thin model films prepared by physical vapor deposition has been investigated with attenuated total reflection infrared (ATR-IR) spectroscopy. On Au the alkaloid forms an adsorbed layer that shows higher stability against desorption than the corresponding adsorption on Pt. In this adsorption layer the intermolecular interactions dominate over metal-adsorbate interactions as indicated by the absence of the spectroscopic features attributed to strongly flat adsorbed species. This behavior is further supported by Density Functional Theory (DFT) calculations indicating that flat and tilted orientations of the quinoline ring have comparable adsorption energy on Au but lower (7-10 kcal/mol) compared to adsorption on Pt (ca. 40 kcal/mol). As a consequence, the creation of a metal surface with isolated chiral sites is prevented by formation of an adsorbed structure formed by intermolecularly bound cinchonidine molecules on Au. While the binding to Pt is due to the formation of sigma-bonds to surface atoms, such aggregates are bound to Au mainly by van der Waals forces. Given this different nature of bonding of cinchonidine to Au and Pt, addition of Au to Pt and Pd films could be used to probe the changes of fractional coverage of the different adsorbed species of cinchonidine on the platinum metals. It is demonstrated that the lowering of the domain size of the platinum group metal by Au can simulate the effect of particle size on the distribution of the surface conformations of the alkaloid on a metal surface.  相似文献   

10.
通过在不锈钢针灸针(AN)表面依次电沉积金(Au)纳米颗粒和铂(Pt)纳米颗粒,基于它们在AN表面的协同作用,实现了一种用于非酶葡萄糖检测的电化学生物传感器。首先,通过扫描电子显微镜对其功能界面(Pt/Au/AN)进行表征,结果显示类似卷心菜的纳米材料均匀致密地分布在AN表面。然后,通过循环伏安法和电化学阻抗法对Pt/Au/AN电极的电化学特性进行了研究。结果表明,与Au/AN或Pt/AN电极相比,Pt/Au/AN电极对葡萄糖氧化表现出优越的电催化活性。这表明双金属Pt/Au的接触界面是葡萄糖氧化的重要电催化位点。在pH7.4的模拟生理介质中,制得传感器的线性范围为0.1~35 mmol·L-1,检测限为0.0763 mmol·L-1,对葡萄糖的检测表现出较高的灵敏度和良好的抗干扰性能、稳定性。此外,该传感器已成功用于人体血清葡萄糖的检测。  相似文献   

11.
The influence of different substrates on the molecular orientation of organometallic polymer Pt-DEBP, [Pt(PBu3)2CCC12H8CC]n, has been investigated by NEXAFS spectroscopy. Thin films were deposited on HOPG, Au/Si(1 1 1), Cr/Si(1 1 1), Si(1 1 1) and stainless steel. The assignment of the spectral features has been carried out on the basis of previous STEX calculations performed on phenylacetylene model molecule in gas phase and adsorbed on Pt(1 1 1) and Cu(1 0 0). Angular dependent analysis of the π* resonance occurring at 285.50 eV photon energy deriving by the benzene carbon orbitals showed a polarisation effect for all substrates. A preferential molecular orientation at nearly 40° to the surface normal was observed. This result might be explained by the strong interaction between sp and sp2 carbons of the organic diethynylbiphenyl DEBP moiety contained in close chains, leading to polymer self-assembling.  相似文献   

12.
To provide better understanding of how a protein secondary structure affects protein-protein and protein-surface interactions, forces between amphiphilic alpha-helical proteins (human apolipoprotein AII) adsorbed on a hydrophilic surface (mica) were measured using an interferometric surface force apparatus (SFA). Forces between surfaces with adsorbed layers of this protein are mainly composed of electrostatic double layer forces at large surface distances and of steric repulsive forces at small distances. We suggest that the amphiphilicity of the alpha-helix structure facilitates the formation of protein multilayers next to the mica surfaces. We found that protein-surface interaction is stronger than protein-protein interaction, probably due to the high negative charge density of the mica surface and the high positive charge of the protein at our experimental conditions. Ellipsometry was used to follow the adsorption kinetics of this protein on hydrophilic silica, and we observed that the adsorption rate is not only controlled by diffusion, but rather by the protein-surface interaction. Our results for dimeric apolipoprotein AII are similar to those we have reported for the monomeric apolipoprotein CI, which has a similar secondary structure but a different peptide sequence and net charge. Therefore, the observed force curves seem to be a consequence of the particular features of the amphiphilic alpha-helices.  相似文献   

13.
The deposition and dissolution processes of copper ad-atoms on a gold or a platinum electrode in sulfuric acid electrolyte solution were investigated by using the electrochemical quartz crystal microbalance. It was found that the weight loss in the removal of the Cu-adlayer from the Au substrate was considerably larger than that expected from Faraday's law whereas the deviation for the Pt substrate was very small. The adsorption of bisulfate or sulfate anions both on Cu ad-atoms and on the electrode substrates was discussed quantitatively. It was demonstrated that higher coverage with Cu ad-atoms and lower adsorbability with bisulfate or sulfate anions were obtained on the Pt electrode than on the Au, and these effects could be ascribed to the difference in electronegativity between Pt and Au substrates.  相似文献   

14.
Protein adsorption behavior is at the heart of many of today's research fields including biotechnology and materials science. With understanding of protein-surface interactions, control over the conformation and orientation of immobilized species may ultimately allow tailor-made surfaces to be generated. In this contribution protein-surface interactions have been examined with particular focus on surface curvature with and without surface chemistry effects. Silica spheres with diameters in the range 15-165 nm with both hydrophilic and hydrophobic surface chemistries have been used as model substrates. Two proteins differing in size and shape, bovine serum albumin (BSA) and bovine fibrinogen (Fg), have been used in model studies of protein binding with detailed secondary structure analysis being performed using infrared spectroscopy (IR) on surface-bound proteins. Although trends in binding affinity and saturation values were similar for both proteins, albumin is increasingly less ordered on larger substrates, while fibrinogen, in contrast, loses secondary structure to a greater extent when adsorbing onto particles with high surface curvature. These effects are compounded by surface chemistry, with both proteins becoming more denatured on hydrophobic surfaces. Both surface chemistry and topography play key roles in determining the structure of the bound proteins. A model of the binding characteristics of these two proteins onto surfaces having differing curvature and chemistry is presented. We propose that properties of an adsorbed protein layer may be guided through careful consideration of surface structure, allowing the fabrication of materials/surface coatings with tailored bioactivity.  相似文献   

15.
Poly(N‐vinyl‐2‐pyrolidone) protected Pt‐core bimetallic Pt/Au‐shell (Pt@Pt/Au) nanoparticles were prepared by multi‐step reduction of HAuCl4 and H2PtCl6 alternately by hydrogen adsorbed on platinum atom. Transmission electronic microscopy (TEM) and x‐ray diffraction (XRD) were used to characterize Pt@Pt/Au nanoparticles. The structure of the shell of the nanoparticles seems to be the Au‐Pt solid solution.  相似文献   

16.
聚环硫氯丙烷与各种氨基吡啶在二乙烯三胺存在下反应,合成了3种主链为聚硫醚、侧链带有吡啶基氨基的新型螯合树脂。它们对贵金属具有优良的吸附性能和高的吸附选择性。并通过X射线光电子能谱初步探讨了树脂对金属离子的螯合作用。  相似文献   

17.
For the purpose of employing an inexpensive alternative to conventional platinum for use by upper-division as well as graduate students, polyaniline (PANI)-deposited stainless steel (SS) and mild steel (MS) electrodes are described as indicator electrodes for potentiometry and potentiometric titrations of some redox reactions. PANI is deposited on the nonplatinum metal by electrochemical polymerization of aniline using cyclic voltammetric technique. Alternate methods to produce the PANI electrodes are also suggested. The electrodes respond to concentration changes of hydroquinone (H2O), Fe2+/Fe3+, and [Fe(CN)6]4–/[Fe(CN)6]3– in HCL electrolytes, and the potential variation with concentration follows the Nernst relationship. Under identical experimental conditions, the response time of the PANI/SS, PANI/MS, and Pt electrodes for a change in concentration of Fe3+ in a mixed electrolyte of Fe2+ and Fe3+ is found to be about 20 s. Neutralization reaction of HC1 versus NaOH, redox reaction of Fe2+ and Ce4+, and redox reaction of Fe2+ and KMnO4 in several concentrations in the range from 1 mM to 100 mM are carried out using the PANI/SS, PANI/MS, and Pt indicator electrodes. The performance of the PANI/SS and PANI/MS electrodes is as good as that of the Pt at all concentration levels of the titrations. The electrodes can be reused for several titrations by storing them in an acid electrolyte for a long period of time. Thus, the conventional inert Pt or Au can be substituted for by using a PANI-deposited nonplatinum reactive metal as a potentiometric sensor for redox titrations.  相似文献   

18.
The adsorption characteristics of three proteins [bovine serum albumin (BSA), myoglobin (Mb), and cytochrome c (CytC)] onto self-assembled monolayers of mercaptoundecanoic acid (MUA) on both gold nanoparticles (AuNP) and gold surfaces (Au) are described. The combination of quartz crystal microbalance measurements with dissipation (QCM-D) and pH titrations of the zeta-potential provide information on layer structure, surface coverage, and potential. All three proteins formed adsorption layers consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction. BSA showed the highest affinity for the MUA/Au, forming an irreversibly adsorbed rigid monolayer with a side-down orientation and packing close to that expected in the jamming limit. In addition, BSA showed a large change in the adsorbed mass due to reversibly bound protein. The data indicate that the irreversibly adsorbed fraction of CytC is a monolayer structure, whereas the irreversibly adsorbed Mb is present in form of a bilayer. The observation of stable BSA complexes on MUA/AuNPs at the isoelectric point by zeta-potential measurements demonstrates that BSA can sterically stabilize MUA/AuNP. On the other hand, MUA/AuNP coated with either Mb or CytC formed a reversible flocculated state at the isoelectric point. The colloidal stability differences may be correlated with weaker binding in the reversibly bound overlayer in the case of Mb and CytC as compared to BSA.  相似文献   

19.
The functional group capacity and the percentage of functional group conversion of crosslinked polystyrene resin bearing N-methyl-2-thioimidazole (MTIR) synthesized under optimum conditions are as high as 4.08 mmol/g resin and 96.0%, respectively. The apparent activation energies of sorption of MTIR for Au(III) and Pt(IV) are 13.1 and 13.4 kJ/mol, respectively. The sorption behavior of MTIR for Au(III), Pt(IV), and Pd(II) obeys the Freundlich and Langmuir isotherms. The sorption capacities of MTIR for Au(III), Pt(IV), and Pd(II) are as high as 4.33, 2.12, and 2.33 mmol/g resin, respectively. Au(III), Pt(IV), and Pd(II) adsorbed on MTIR can be eluted quantitatively by the eluant. The resin can be regenerated easily and reused without an obvious decrease in the sorption capacity for Au(III) and Pd(II). The resin has high sorption selectivity for noble metal ions. Au(III) can be separated quantitatively in the presence of high concentrations of Cu2+, Fe3+, Ni2+, and Mn2+. The recovery of platinum from the spent industrial catalysts is 98.6% by MTIR. The preconcentration and separation of palladium and platinum from the anode deposits of electrolysis of crude copper have been investigated. The resin may have potential industrial uses.  相似文献   

20.
The effects of different types of supporting electrolytes on the removal of beta-lactoglobulin (beta-Lg) after being adsorbed to a stainless steel surface by a H2O2-electrolysis treatment was investigated. In this process, hydroxyl radicals (*OH), generated by the electrolysis of hydrogen peroxide, decompose the substances adhering to the surface. The removal of the adsorbed protein from the stainless steel surface during the treatment was monitored in situ by ellipsometry. The apparent first-order removal rate constants, k(cl), for 17 types of supporting electrolytes were determined, as well as the current corresponding to the rate of generation of *OH. The k(cl) and generated current values for LiCl, NaCl, KCl, KNO(3), K(2)SO(4), CH(3)COOK, and K(2)CO(3) were all similar. Ca(2+) and Mg(2+) strongly suppressed the removal of the adsorbed protein. The presence of ammonium compounds led to an increase in k(cl) and current values. In H2O2-electrolysis in the presence of potassium phosphate, the removal was extremely rapid, and an apparent increase in the thickness of the adsorbed layer was observed. The mechanisms responsible for the peculiar effects of calcium, magnesium, phosphate, and ammonium compounds were investigated by means of a Fourier transform infrared (FTIR) spectroscopic analysis, as well as by the characteristics of the removal under different treatment conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号