首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The remarkable differences between the infrared spectra of oxygen adsorption and nitrogen desorption in coal have been experimentally and theoretically investigated. Density functional theory calculations were performed to better explain the mechanism of oxygen adsorption using six different molecular models of coal. In addition, the remarkable differences of infrared spectra between oxygen adsorption and nitrogen desorption was defined as the index V, which was used to classify the spontaneous combustion tendency of coal. The experimental data indicated that the spectra in the 4000–2000 cm?1 and 1250–1050 cm?1 regions exhibited significant changes. These results suggest that the mechanism of oxygen adsorption is the alteration and transfer of charge density around the activated sites, which leads to the observed changes of the infrared spectra. The V, which is related to the alteration of spectral intensity, is found to decrease with the increase of adiabatic oxidation time and the relative spontaneous combustion period of coal. This observation solidifies the connection between sample spectral intensity and oxygen chemisorption. These data suggest that the hydroxy in hydroxy and carboxyl groups on the surface of coal particles is the site of oxygen chemisorption, and the V can be used to rapidly and accurately categorize the spontaneous combustion tendency of coal.  相似文献   

2.
This study details an in situ Fourier transform infrared spectroscopy analytical system that was employed to follow chemical variations in the functional groups on coal surface during the oxidation process at low temperatures. In the reported in situ Fourier transform infrared spectroscopy system, a special chamber was used to contain the coal powders, and a gas inlet tube and a programmable heater were used to simulate different reaction atmospheres and temperatures. The comparisons between in situ and ex situ Fourier transform infrared spectroscopy spectra indicate that the in situ Fourier transform infrared spectroscopy data offer a more accurate reflection of changes in the functional groups. The real-time changes of aliphatic hydrocarbon groups and oxygen-containing groups in a lignite coal sample were analyzed from 30°C to 220°C using in situ Fourier transform infrared spectroscopy. The experimental results indicate that the chemical variations in the functional groups are affected by their relative chemical activities. The results show that the presence of aliphatic groups on the coal surface varies with temperature. Over the range of 30–70°C the presence of these groups decreases, but then their abundance increases over the range of 70–180°C and finally decreases again when the temperature is increased to between 180°C and 220°C. With respect to oxygen-containing functional groups, three various trends were observed as the test temperature was varied. Our conclusion was that these variations are a function of the reaction activities of the various oxygen-containing functional groups.  相似文献   

3.
The effect of thermal annealing on the combustion reactivity of a bituminous coal char has been investigated with a focus on the role of the formation of surface oxides by oxygen chemisorption. The combined use of thermogravimetric analysis and of analysis of the off-gas during isothermal combustion of char samples enabled the determination of the rate and extent of oxygen uptake along burn-off. Combustion was carried out at temperatures between 350 and 510 °C. Char samples were prepared by controlled isothermal heat treatment of coal for different times (in the range between 1 s and 30 min) at different temperatures (in the range 900–2000 °C). Results indicate that oxygen uptake is extensive along burn off of chars prepared under mild heat treatment conditions. The maximum oxygen uptake is barely affected by the combustion temperature within the range of combustion conditions investigated. The severity of heat treatment has a pronounced effect on char combustion rate as well as on the extent and rate at which surface oxides are built up by oxygen chemisorption. Chars prepared under severe heat treatment conditions show negligible oxygen uptake and strongly reduced combustion rates. Altogether it appears that a close correlation can be established between the extent and the accessibility of active sites on the carbon surface and the combustion rate. Despite the investigation has been carried out at temperatures well below those of practical interest, results provide useful insight into the relationship existing between thermal annealing, formation of surface oxide and combustion reactivity which is relevant to the proper formulation of detailed kinetic models of char combustion.  相似文献   

4.
Carboxyl groups play an important role during the development of coal self-heating. The real-time changing characteristics of carboxyl groups were obtained using an in situ Fourier Transform Infrared Spectroscopy method. They are significantly influenced by reaction atmospheres. Under dry-air atmosphere, their quantity obviously decreases before reaching 120°C and then increases with temperature rise. Under oxygen-free atmosphere, it decreases before reaching 80°C and then increases with temperature rise. In contrast with direct oxidation process, the quantity of carboxyl groups is smaller and the decrease phenomenon at the beginning almost disappears during the oxidation process following oxygen-free reaction. The results indicate that the carboxyl groups have different reaction pathways during coal self-heating. These pathways can be divided into two kinds, that is, oxidation pathways and self-reaction pathways. The study proposed the reaction sequences of carboxyl groups during coal self-heating, which are helpful for revealing the mechanism of coal spontaneous combustion.  相似文献   

5.
This contribution explores the effect of nanoparticles of iron (III) oxide (Fe2O3) on the combustion of coal surrogate, i.e., anisole, identifying the changes in ignition features as well as the occurrence of persistent organic pollutants in the initiation channels. The method applies packed-bed reactor coupled with Fourier transform infrared (FTIR) spectroscopy to quantitate the ignition temperature under typical fuel-rich conditions, in-situ electron paramagnetic resonance (EPR) to elucidate the formation of environmentally-persistent free radicals (EPFR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the chemisorption of organic substrates on the nanoparticles, as well as X-ray diffraction for particles characterisation (PXRD). We employ cluster-based quantum mechanical calculation to map the reaction pathway within the scope of the density functional theory. The results of Fe2O3-mediated combustion of anisole depict an excessive reduction in ignition temperature from 500?°C around 220?°C at λ?=?0.8. As confirmed both from EPR and DRIFTS measurements, the chemisorption of anisole on α-Fe2O3 surfaces follows the direct dissociation of the O–CH3 (and OCH2–H), leading to the formation of surface-bound phenoxy radicals at temperatures as low as 25?°C and incurring an estimated energy barrier of Ea?=?18?kJ mol?1 and a preexponential factor of A?=?2.7?×?1012 M?1 s?1. This insight applies to free-radical chain reactions that induce spontaneous fires of coal, as coal comprises ferric oxide nanoparticles, and equally to coexistence of aromatic fuels with thermodynamically reactive Fe2O3 surface, e.g., in fly ash, at the cooled-down tail of combustion stacks.  相似文献   

6.
利用TG/DTA 6300的热重分析仪对胜利褐煤(SL)、神华烟煤(SH)与塔旺陶勒盖无烟煤(TT)三种不同变质程度的原煤进行空气气氛下燃烧反应;通过FTIR(傅里叶变换红外光谱)分析了三种煤样及不同终温下固定床热解半焦的官能团组成;运用数学高斯函数对FTIR曲线重叠吸收峰进行分峰拟合,利用拟合峰面积计算FTIR的芳香度指数(R)、芳香结构稠合指数(D)及有机成熟度指数(C)结构参数。结果表明: SL,SH与TT煤着火温度分别为299.3,408.2及441.0℃;最大失重速率峰温度分别为348.6,480.5及507.0 ℃,即随煤样变质程度的不同,着火点和最大失重速率温度都不同程度提高。煤中官能团结构较复杂,不同变质程度的煤样的红外光谱曲线中均可以观察到羟基(—OH);脂肪烃(—CH2,—CH3);芳环(CC); 含氧官能团(CO, C—O)等主要官能团的振动吸收峰。随着热解炼焦温度的升高,三种煤样中脂肪烃类(—CH2—,—CH3)红外振动吸收峰均逐渐减小;炼焦后CO在1 700 cm-1伸缩振动峰在炼焦温度到达550 ℃时基本消失;SL原煤样在1 000~1 800 cm-1 含氧官能团吸收峰区域红外曲线更为复杂,随炼焦温度升高较之其他煤样变化最为显著;而SH及TT煤芳环CC吸收峰在温变过程中峰位及峰强度均无显著变化。通过R,DC值随热解终温的变化曲线,三种变质程度煤在热解反应过程中主体官能团变化趋势存在差异。  相似文献   

7.
We use the adsorption probabilities of molecular nitrogen and oxygen to study the physi- and chemisorption on small silver particles. The physisorption of nitrogen is governed by the structure of the particle surface. The sticking of oxygen additionally involves the electronic configuration of the metal cluster. At 77 K molecular oxygen sticks chemisorbed to the particles with a transfer of one electron. At temperatures above 105 K the chemisorption transforms into oxidation, invoking the dissociation of the oxygen molecule and the loss of a single oxygen atom.  相似文献   

8.
A FTIR study to detect the chemical modifications involved during the oxidation of a Spanish coal from the Central Asturian Basin (Spain) has been carried out. The coal was oxidized at 473 K for periods of 3, 7, 14 and 42 days, and at 543 K for 1, 2, 3, 4 and 14 days. Results show that at each temperature there was an increase in oxygenated functions (carboxyls, esters, anhydrides, ethers) and a gradual decrease in aliphatic and aromatic structure. There are remarcable differences at the two temperatures. Intermediate states of oxidation, less condensated structures and an appreciable proportion of the aliphatic C-H groups are predominant in coal samples oxidized at 473 K. When oxidation is carried out at 543 K, more oxidized forms, a more marked process of decarboxylation and more condensated structures appear, also aliphatic groups disappears almost totally. Chemical analysis and textural properties of each oxidized coal sample have been carried out, and a correlation between chemical changes detected by FTIR and textural properties has been attempted.  相似文献   

9.
Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with ?386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.  相似文献   

10.
Coal splitting and staging is a promising technology to reduce nitrogen oxides (NOx) emissions from coal combustion through transforming nitrogenous pollutants into environmentally friendly gasses such as nitrogen (N2). During this process, the nitrogenous species in pyrolysis gas play a dominant role in NOx reduction. In this research, a series of reactive force field (ReaxFF) molecular dynamics (MD) simulations are conducted to investigate the fundamental reaction mechanisms of NO removal by nitrogen-containing species (HCN and NH3) in coal pyrolysis gas under various temperatures. The effects of temperature on the process and mechanisms of NO consumption and N2 formation are illustrated during NO reduction with HCN and NH3, respectively. Additionally, we compare the performance of NO reduction by HCN and NH3 and propose control strategies for the pyrolysis and reburn processes. The study provides new insights into the mechanisms of the NO reduction with nitrogen-containing species in coal pyrolysis gas, which may help optimize the operating parameters of the splitting and staging processes to decrease NOx emissions during coal combustion.  相似文献   

11.
This paper reports surface electrical properties of thin film of indium sesquioxide, In2O3, during oxidation and reduction at elevated temperatures (298 K and 873 K). The studies involved monitoring of surface potential during oxidation and reduction experiments using work function measurements. The obtained experimental data are considered in terms of the effect of temperature on reactivity between oxygen and In2O3, involving chemisorption and oxygen incorporation. The reactivity in the range 298 – 773 K is limited to chemisorption resulting in the formation of surface dipoles exhibiting positive surface charge. Oxidation at 873 K results in slow oxygen incorporation.  相似文献   

12.
Apparent char kinetic rates are commonly used to predict pulverized coal char burning rates. These kinetic rates quantify the char burning rate based on the temperature of the particle and the oxygen concentration at the external particle surface, inherently neglecting the impact of variations in the internal diffusion rate and penetration of oxygen. To investigate the impact of bulk gas diffusivity on these phenomena during Zone II burning conditions, experimental measurements were performed of char particle combustion temperature and burnout for a subbituminous coal burning in an optical entrained flow reactor with helium and nitrogen diluents. The combination of much higher thermal conductivity and mass diffusivity in the helium environments resulted in cooler char combustion temperatures than in equivalent N2 environments. Measured char burnout was similar in the two environments for a given bulk oxygen concentration but was approximately 60% higher in helium environments for a given char combustion temperature. To augment the experimental measurements, detailed particle simulations of the experimental conditions were conducted with the SKIPPY code. These simulations also showed a 60% higher burning rate in the helium environments for a given char particle combustion temperature. To differentiate the effect of enhanced diffusion through the external boundary layer from the effect of enhanced diffusion through the particle, additional SKIPPY simulations were conducted under selected conditions in N2 and He environments for which the temperature and concentrations of reactants (oxygen and steam) were identical on the external char surface. Under these conditions, which yield matching apparent char burning rates, the computed char burning rate for He was 50% larger, demonstrating the potential for significant errors with the apparent kinetics approach. However, for specific application to oxy-fuel combustion in CO2 environments, these results suggest the error to be as low as 3% when applying apparent char burning rates from nitrogen environments.  相似文献   

13.
Polyethylene glycol (PEG) molecules act as a reducing and stabilizing agent in the formation of silver nanoparticles. PEG undergoes thermal oxidative degradation at temperatures over 70 °C in the presence of oxygen. Here, we studied how the temperature and an oxidizing atmosphere could affect the synthesis of silver nanoparticles with PEG. We tested different AgNO3 concentrations for nanoparticles syntheses using PEG of low molecular weight, at 60 and 100 °C. At the higher temperature, the reducing action of PEG increased and the effect of PEG/Ag+ ratio on nanoparticles aggregation changed. These results suggest that different synthesis mechanisms operate at 60 and 100 °C. Thus, at 60 °C the reduction of silver ions can occur through the oxidation of the hydroxyl groups of PEG, as has been previously reported. We propose that the thermal oxidative degradation of PEG at 100 °C increases the number of both, functional groups and molecules that can reduce silver ions and stabilize silver nanoparticles. This degradation process could explain the enhancement of PEG reducing action observed by other authors when they increase the reaction temperature or use a PEG of higher molecular weight  相似文献   

14.
Thermal annealing associated with heat treatment of coal chars affects gasification reactivity and levels of unburned carbon in residual ash from coal-fired furnaces. The present study addresses the effect of char surface oxidation, occurring upon exposure to oxygen, on the course of thermal annealing, and related loss of combustion reactivity. This goal is pursued by comparing the extent of thermal annealing suffered by coal char upon heat treatment in a nitrogen atmosphere with that of chars that underwent oxidation prior to or during heat treatment. Oxidation of char was accomplished by supplying single or multiple pulses of air during the heat treatment, which were sufficient to oxidize the char surface but small enough to limit carbon gasification to less than 5%. The extent of thermal annealing was characterized both in terms of the loss of combustion reactivity and of the development of structural anisotropy of char samples, investigated by HRTEM. Results of the present study confirm that heat treatment reduces oxyreactivity of char samples, the effect being more pronounced at temperatures exceeding 1200 °C. Oxidation of samples mitigates the effects of heat treatment, as demonstrated by the smaller loss of gasification reactivity and by the more limited development of structural anisotropy of oxidized samples. Correspondingly, elemental analysis of samples indicates the formation of stable surface oxides upon oxidation, that are subsequently desorbed upon heat treatment. At temperatures exceeding 1200 °C, the effect of oxidation vanishes. Results are analysed and discussed in the light of the possible hindrance of thermal annealing due to the formation of stable surface oxides and of the parallel modifications occurring to the ash constituents.  相似文献   

15.
Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.  相似文献   

16.

This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.

  相似文献   

17.
High-alkali coal contains relatively high contents of alkali metals, which can be usually released in the form of gaseous chlorides and hydroxides during combustion. The effect of alkali metals on NO formation is analyzed in an electrical heated drop-tube furnace at 800–1200 °C during coal combustion. Based on experiments and simulations, the mechanisms underlying the effects of Na salts on NO emission are clarified in CO/NH3/O2/H2O/Na additive (NaCl, Na2SO4, and NaAc) systems. The results indicate that the yield of NO initially increases and then decreases as the furnace temperature increased. As the temperature increased from 800 to 1000 °C, NO precursors (HCN and NH3) undergo accelerated oxidation to form NO. When the furnace temperature is greater than 1000 °C, due to the rapid precipitation of volatiles, a local reducing atmosphere is present around the pulverized coal particles, which inhibits NO formation. NaCl and NaAc addition significantly inhibit NO formation. However, the inhibitory effect is weakened at higher temperatures (>1000 °C). The Na2SO4 additive exerts little effect on NO generation during combustion because of its stable chemical properties. The same conclusion is also obtained from gaseous experiments showing that NaCl and NaAc significantly inhibit NH3 oxidation to form NO. Based on the results of calculations, NaCl and NaAc addition inhibits NO formation by promoting the recombination of H, O and OH and reducing the concentrations of radicals. According to the analysis of chemical reactions, the effect of NaCl and NaAc on NO formation is mainly determined by the competitive relationships among multiple reactions.  相似文献   

18.
The interactions between selenium vapors and coal accessory Ca/Fe-minerals favor selenium emission control by transferring selenium into fly ash during coal combustion. Considering the complicated effects of iron transformation on selenium retention, iron species in fly ashes from seven coal-fired power plants were distinguished and the associations between selenium and iron minerals were assessed. Iron oxides (including Fe3O4, γ-Fe2O3 and ɑ-Fe2O3) were determined as the main form of iron minerals in fly ash. The adsorption of selenium vapors by different iron oxides was conducted at temperatures ranging from 300 to 900 °C and the species of captured selenium were identified. Furthermore, reaction sites on the surfaces of fresh and reacted iron oxides were compared to investigate the mechanism regarding selenium adsorption over these iron oxides, which were further clarified through density functional theory study. The results showed that iron oxides were surely to play a significant role in selenium retention mainly through chemisorption and the reactions probably occurred at temperatures below 900 °C. At 300 °C, ɑ-Fe2O3 had better selenium adsorption performance than Fe3O4/γ-Fe2O3. Regardless of iron species, Fe atoms on iron oxides participated in the selenium adsorption by forming a Se–O–Fe Structure. With temperature increasing, selenium adsorption by Fe atoms was suppressed, which caused a drop off in selenium capture capacity of Fe3O4 and ɑ-Fe2O3. Differently, increasing temperature promoted selenium adsorption over γ-Fe2O3, which owned a high selenium adsorption capacity even at 700 °C. Further analysis confirmed that the presence of O2/H2O(g) in the flue gas contributed to the formation of oxygen vacancies on the surface of γ-Fe2O3 at high temperatures and facilitated selenium vapors to react with Fe atoms.  相似文献   

19.
Segregation phenomena and formation of surface compounds on Fe-17Cr (ferritic stainless steel) were studied at temperatures up to 800 °C upon annealing and kinetically controlled oxidation by photoelectron spectroscopy and inelastic electron background analysis. The results revealed the formation of a chromium nitride surface compound during annealing in ultrahigh vacuum at temperatures exceeding 527 °C. Surface enrichment of P, As, and other trace elements became more prominent at higher temperatures approaching 800 °C. It was found that nitrogen was buried below the surface oxide layer during oxygen exposure, yet it had little effect on the rate of oxidation. However, the formation of CrN surface compound promoted the selective oxidation of Cr initially, which is of great importance in processing and application environments involving high temperature and controlled atmosphere conditions.  相似文献   

20.
Binary promoted nickel – chromium oxide and ternary promoted nickel – chromium oxide – aluminium oxide mixed catalysts were prepared for use in the present study. The catalysts were prepared by co-precipitation of the corresponding metal nitrates as carbonates followed by calcination in nitrogen atmosphere at 350 °C and reduction in hydrogen atmosphere at 320 °C. To prevent spontaneous oxidation of the catalysts, bidistilled water was added followed by heating of the catalyst mixtures at about 110 °C in hydrogen atmosphere for few hours. Deactivation of catalysts was studied by measurements of the variation of their activities with the time of contact of the reacting gas mixtures with the catalyst surface in the reaction chamber. It was found that while the catalytic activity of ternary catalysts for the isotopic exchange of deuterium between hydrogen and water vapour was higher than that of the binary one, the loss in activity of the former teas faster than the latter. Reactivation of the catalysts were carried out at different temperatures between 110–160°C in hydrogen atmosphere. Catalytic activity measurements indicated that higher temperatures are better for the reactivation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号