首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the use of perfusion-permeability magnetic resonance imaging (ppMRI) to study hemodynamic parameters in human prostate tumor xenografts, following treatment with the vascular endothelial growth factor-A (VEGF) receptor tyrosine kinase inhibitor, ZD4190. Using a macromolecular contrast agent (P792), a fast MR imaging protocol and a compartmental data analysis, we were able to demonstrate a significant simultaneous reduction in tumor vascular permeability, tumor vascular volume and tumor blood flow (43%, 30% and 42%, respectively) following ZD4190 treatment (100 mg/kg orally, 24 h and 2 h prior to imaging). This study indicates that MR imaging can be used to measure multiple hemodynamic parameters in tumors, and that tumor vascular permeability, volume and flow, can change in response to acute treatment with a VEGF signaling inhibitor.  相似文献   

2.
Cediranib (RECENTIN, AZD2171) is a highly potent inhibitor of the tyrosine kinase activity associated with all three vascular endothelial growth factor (VEGF) receptors and is currently in Phase II/III clinical trials. Preclinically, cediranib inhibits VEGF signaling and angiogenesis in vivo and impedes solid tumor growth significantly. Clinically, changes observed using dynamic contrast-enhanced MRI (DCE-MRI) with gadopentate suggest that acute cediranib treatment compromises tumor hemodynamics. In this study, a DCE-MRI baseline scan using gadopentate was performed in nude rats bearing Lovo (human colorectal carcinoma) or C6 (rat glioma) tumors. Cediranib (3 mg/kg per day) or vehicle was then dosed orally (2, 26 and 50 h after the baseline scan; 12 rats per group) and a second scan acquired 2 h after the final dosing event. Mean values for K(trans) (Tofts and Kermode-derived) [Magn Reson Med 17 (1991) 357-67] and the initial area under the gadolinium concentration curve over the first 60 s (iAUC) were reduced significantly following cediranib treatment: K(trans) by 33% (P<.05) in both tumor models and iAUC by 23% (P>.05) and 33% (P>.005) in Lovo and C6, respectively. This is the first preclinical investigation to examine the effect of cediranib treatment on tumors by DCE-MRI with gadopentate.  相似文献   

3.
Dynamic contrast-enhanced MRI (DCE-MRI) was used to noninvasively evaluate the effects of AG-03736, a novel inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, on tumor microvasculature in a breast cancer model. First, a dose response study was undertaken to determine the responsiveness of the BT474 human breast cancer xenograft to AG-013736. Then, DCE-MRI was used to study the effects of a 7-day treatment regimen on tumor growth and microvasculature. Two DCE-MRI protocols were evaluated: (1) a high molecular weight (MW) contrast agent (albumin-(GdDTPA)(30)) with pharmacokinetic analysis of the contrast uptake curve and (2) a low MW contrast agent (GdDTPA) with a clinically utilized empirical parametric analysis of the contrast uptake curve, the signal enhancement ratio (SER). AG-013736 significantly inhibited growth of breast tumors in vivo at all doses studied (10-100 mg/kg) and disrupted tumor microvasculature as assessed by DCE-MRI. Tumor endothelial transfer constant (K(ps)) measured with albumin-(GdDTPA)(30) decreased from 0.034+/-0.005 to 0.003+/-0.001 ml min(-1) 100 ml(-1) tissue (P<.0022) posttreatment. No treatment-related change in tumor fractional plasma volume (fPV) was detected. Similarly, in the group of mice studied with GdDTPA DCE-MRI, AG-013736-induced decreases in tumor SER measures were observed. Additionally, our data suggest that 3D MRI-based volume measurements are more sensitive than caliper measurements for detecting small changes in tumor volume. Histological staining revealed decreases in tumor cellularity and microvessel density with treatment. These data demonstrate that both high and low MW DCE-MRI protocols can detect AG-013736-induced changes in tumor microvasculature. Furthermore, the correlative relationship between microvasculature changes and tumor growth inhibition supports DCE-MRI methods as a biomarker of VEGF receptor target inhibition with potential clinical utility.  相似文献   

4.
5.
A physiological pharmacokinetic (PBPK) model was used to estimate tumor microcirculation in nude mice with a grafted tumor. The kinetics of a rapid clearance blood pool agent, Vistarem, were investigated by dynamic MRI after bolus administration. Signal enhancements were recorded in arterial blood and in tumor tissue. To analyze these data, we developed a whole-body mathematical model of the agent's biodistribution using physiological parameters. The model included six compartments: arterial and venous plasma, tumor (split into capillaries and interstitium), and the rest of the body (also split into capillaries and interstitium). As an application, changes in tumor microcirculation parameters were evaluated in mice receiving either an antiangiogenic treatment (ZD4190) or a placebo. The analysis was performed in a Bayesian framework, and the model was fitted to experimental data using Markov Chain Monte Carlo techniques. Results showed a significant difference in tumor microcirculation between the two groups of mice when the microcirculation parameters are considered together. This whole-body physiological model enables to analyze jointly data in tumor tissue and in arterial blood. This leads to accurate estimates of microcirculation parameters and the evaluation of their uncertainty.  相似文献   

6.
We studied the dynamics of injected contrast enhancement in implanted VX2 tumors in rabbit thigh muscle. We compared two contrast agents Gd-DTPA and NMS60, a novel gadolinium containing trimer of molecular weight 2.1 kd. T1-weighted spin echo images were acquired preinjection and at 5-60 min after i.v. injection of 0.1 mmol/kg of agent. Dynamic T1-weighted SPGR images (1.9 s/image) were acquired during the bolus injection. Male NZW rabbits (n = 13) were implanted with approximately 2 x 10(6) VX2 tumor cells and grew tumors of 28+/-27 mL over 12 to 21 days. NMS60 showed significantly greater peak enhancement in muscle, tumor rim, and core compared to DTPA in both T1-weighted and SPGR images. NMS60 also showed delayed peak enhancement in the dynamic scans (compared to Gd-DTPA) and significantly reduced leakage rate constant into the extravascular space for tumor rim (K21 = 5.1 min(-1) vs. 11.5 min(-1) based on a 2 compartment kinetic model). The intermediate weight contrast agent NMS60 offers greater tumor enhancement than Gd-DTPA and may offer improved regional differentiation on the basis of vascular permeability in tumors.  相似文献   

7.
We carried out retrospective analysis of apparent diffusion coefficient (ADC) values in 48 infiltrating ductal breast cancer patients who had dynamic contrast-enhanced magnetic resonance imaging (DCEMRI; Group I) and in 53 patients (Group II) for whom DCEMRI data were not available. Twenty-three patients of Group I showed no necrosis (Group Ia), while in 25 patients, both viable (nonnecrotic) and necrotic tumor areas (Group Ib) were observed on DCEMRI. T1-weighted, fat-suppressed and short inversion recovery images were used to identify the viable and necrotic tumor areas in Group II patients, and necrosis was not seen in 11 patients (Group IIa), while 42 (Group IIb) showed both viable and necrotic tumor areas. The ADCs of the necrotic area of Group Ib (1.79±0.30 ×10(-3) mm(2)/s) and Group IIb (1.83±0.40 ×10(-3) mm(2)/s) patients were similar and significantly higher (P<.01) compared to the ADCs of the viable tumor area of Group Ia (0.96±0.21 ×10(-3) mm(2)/s) and Group IIa (0.90±0.17 ×10(-3) mm(2)/s) patients. Proton MR spectroscopy (MRS) data were also available in these patients, and the ADC values were retrospectively determined from the voxel from which MR spectrum was obtained. These values were compared with the ADC obtained for the viable and necrotic areas of the tumor. ADC of the MRS voxel was similar to that obtained for the viable tumor area in patients of both groups. This interesting observation reveals the potential utility of using ADC values to identify viable tumor area for positioning of voxel for MRS in the absence of DCEMRI data.  相似文献   

8.
There is increasing interest in obtaining quantitative imaging parameters to aid in the assessment of tumor responses to treatment. In this study, the feasibility of performing integrated diffusion, perfusion and permeability magnetic resonance imaging (MRI) for characterizing responses to dexamethasone in intracranial tumors was assessed. Eight patients with glioblastoma, five with meningioma and three with metastatic carcinoma underwent MRI prior to and 48-72 h following dexamethasone administration. The MRI protocol enabled quantification of the volume transfer constant (K(trans)), extracellular space volume fraction (nu(e)), plasma volume fraction (nu(p)), regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), longitudinal relaxation time (T(1)) and mean diffusivity (D(av)). All subjects successfully completed the imaging protocol for the presteroid and poststeroid scans. Significant reductions were observed after the treatment for K(trans), nu(e) and nu(p) in enhancing tumor as well as for T(1) and D(av) in the edematous brain in glioblastoma; on the other hand, for meningioma, significant differences were seen only in edematous brain T(1) and D(av). No significant difference was observed for any parameter in metastatic carcinoma, most likely due to the small sample size. In addition, no significant difference was observed for enhancing tumor rCBF and rCBV in any of the tumor types, although the general trend was for rCBV to be reduced and for rCBF to be more variable. The yielded parameters provide a wealth of physiologic information and contribute to the understanding of dexamethasone actions on different types of intracranial tumors.  相似文献   

9.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using extracellular contrast agents has proved to be useful for the characterization of breast tumors. DCE-MRI has demonstrated a high sensitivity (around 95%) but a rather poor and controversial specificity, varying, according to the different studies, from 45% to 90%. In order to increase (a) the specificity and (b) the robustness of this quantitative approach in multicenter evaluation (five MRI units), a quantitative approach called dynamic relaxometry has been developed. According to the proposed method, the time-dependent longitudinal relaxation rate measured on region of interest of the lesion was calculated during the contrast uptake, after intravenous bolus injection of contrast agent. A specifically developed method was used for fast R(1) measurements. Relaxometry time curves are fitted to the Tofts model allowing the measurement of the parameters describing the enhancement curve (maximum relation rate enhancement, initial, 30-s and 60-s slopes) and the tissue parameters [transfer constant (K(trans) min(-1)) and extracellular extravascular space fraction (v(e))]. Correspondence factorial analysis followed by hierarchical ascendant classification are then performed on the different parameters. Higher K(trans) values were observed in infiltrative ductal carcinomas than in infiltrative lobular carcinomas, in agreement with data published by other groups. Specificity of DCE-MRI has been increased up to 85%, with a sensitivity of 95% with K(trans)/v(e) and enhancement index I (ratio of initial slope by maximum relaxation rate enhancement). A multiparametric data analysis of the calculated parameters opens the way to include quantitative image-based information in new nosologic approaches to breast tumors.  相似文献   

10.
The application of dynamic susceptibility contrast (DSC) MRI methods to assess brain tumors is often confounded by the extravasation of contrast agent (CA). Disruption of the blood-brain barrier allows CA to leak out of the vasculature leading to additional T(1), T(2) and T(2) relaxation effects in the extravascular space, thereby affecting the signal intensity time course in a complex manner. The goal of this study was to validate a dual-echo DSC-MRI approach that separates and quantifies the T(1) and T(2) contributions to the acquired signal and enables the estimation of the volume transfer constant, K(trans), and the volume fraction of the extravascular extracellular space, v(e). To test the validity of this approach, DSC-MRI- and dynamic contrast enhanced (DCE) MRI-derived K(trans) and v(e) estimates were spatially compared in both 9L and C6 rat brain tumor models. A high degree of correlation (concordance correlation coefficients >0.83, Pearson's r>0.84) and agreement was found between the DSC-MRI- and DCE-MRI-derived measurements. These results indicate that dual-echo DSC-MRI can be used to simultaneously extract reliable DCE-MRI kinetic parameters in brain tumors in addition to conventional blood volume and blood flow metrics.  相似文献   

11.
The conventional MR imaging appearance of gangliogliomas is often variable and nonspecific. Conventional MR images, relative cerebral blood volume (rCBV) and vascular permeability (K(trans)) measurements were reviewed in 20 patients with pathologically proven grade 1 and 2 gangliogliomas (n = 20) and compared to a group of grade 2 low-grade gliomas (n = 30). The conventional MRI findings demonstrated an average lesion size of 4.1 cm, contrast enhancement (n = 19), variable degree of edema, variable mass effect, necrosis/cystic areas (n = 8), well defined (n = 12), signal heterogeneity (n = 9), calcification (n = 4). The mean rCBV was 3.66 +/- 2.20 (mean +/- std) for grade 1 and 2 gangliogliomas. The mean rCBV in a comparative group of low-grade gliomas (n = 30), was 2.14 +/- 1.67. p Value < 0.05 compared with grade 1 and 2 ganglioglioma. The mean K(trans) was 0.0018 +/- 0.0035. The mean K(trans) in a comparative group of low-grade gliomas (n = 30), was 0.0005 +/- 0.001. p Value = 0.14 compared with grade 1 and 2 ganglioglioma. The rCBV measurements of grade 1 and 2 gangliogliomas are elevated compared with other low-grade gliomas. The K(trans), however, did not demonstrate a significant difference. Gangliogliomas demonstrate higher cerebral blood volume compared with other low-grade gliomas, but the degree of vascular permeability in gangliogliomas is similar to other low-grade gliomas. Higher cerebral blood volume measurements can help differentiate gangliogliomas from other low-grade gliomas.  相似文献   

12.
Conventional hyperthermia enhances tumor response to radiotherapy through thermal cell inactivation and vascular shut-down, whereas mild hyperthermia potentiates the effect of radiotherapy by improving tumor oxygenation. The work reported here was aimed at investigating whether 31P-magnetic resonance spectroscopy (31P-MRS) measurements of tumor bioenergetic status; i.e., the (PCr + NTPbeta)/Pi resonance ratio, and/or the spin lattice relaxation times, T1s, of the Pi and NTPbeta resonances can be used to distinguish between the effects of conventional and mild hyperthermia. BEX-t human melanoma xenografts were treated at 43.0 degrees C for 15 or 60 min, and bioenergetic status and T1s were measured as function-of-time after treatment. Hyperthermia-induced effects on tumor blood flow was measured by using the 86Rb uptake method. The morphology of the capillary network in treated and untreated tumors was studied by histologic examination. Tumors treated for 15 min showed increased blood flow and dilated capillaries, whereas tumors treated for 60 min showed decreased blood flow and capillary occlusions; i.e., 43.0 degrees C for 15 min was a treatment consistent with mild hyperthermia and 43.0 degrees C for 60 min was consistent with conventional hyperthermia treatment of BEX-t tumors. Bioenergetic status increased after treatment at 43.0 degrees C for 15 min, and decreased after treatment at 43.0 degrees C for 60 min, similar to the blood flow. Likewise, the T1 of the Pi resonance increased after treatment at 43.0 degrees C for 15 min, and decreased after treatment at 43.0 degrees C for 60 min. The T1 of the NTPbeta resonance showed a similar change as the T1 of the Pi resonance, but less pronounced. Consequently, 31P-MRS measurements of tumor bioenergetic status and the T1 of the Pi resonance may perhaps be utilized to distinguish between vascular effects of mild and conventional hyperthermia.  相似文献   

13.
Quantification of the acute increases in blood-brain barrier (BBB) permeability that occur subsequent to experimental ischemic injury has been limited to single time-point, invasive methodologies. Although permeability can be qualitatively assessed to visualise regional changes during sequential studies on the same animal using contrast-enhanced magnetic resonance imaging (MRI), quantitative information on the magnitude of change is required to compare barrier function during sequential studies on the same animal or between different animals. Recently, improvements in MRI tracer kinetic models and in MR hardware design mean that an estimate of permeability in vivo can now be obtained with acceptable accuracy and precision. We report here the use of such methods to study acute changes following spontaneous reperfusion in an animal model of ischemia. We have obtained estimates of BBB permeability following spontaneous reperfusion, subsequent to forebrain ischemia by unilateral carotid injection of starch microspheres in the rat. T2*-weighted and diffusion-trace imaging were used to monitor the initial reduction in CBF and the time-course of ischemia, respectively. Following reperfusion, an intraveneous bolus of dimeglumine gadopentetate (Gd-DTPA) and horseradish peroxidase (HRP) was given during a continuous acquisition of T1 maps with a 48 s temporal resolution. Permeability maps were constructed using a 4-compartment model; K(trans), the permeability-surface area product of the capillary walls was estimated to be 9.2 +/- 0.6 x 10(-4) min(-1) in the cortex. Visualisation of the regional extent of HRP extravasation on histological sections following termination of the experiment demonstrated very little correspondence to the region of Gd-DTPA leakage. Quantitative MRI assessment of BBB permeability following ischemia-reperfusion is consistent with published values obtained by invasive methods. Differences between Gd-DTPA-enhancement and HRP may reflect differences in the molecular size of the tracers.  相似文献   

14.
Several novel macromolecular anticancer agents have fallen short of expectations owing to inadequate and heterogeneous uptake in tumor tissue. In the present work, contrast-enhanced magnetic resonance imaging was used to measure the intertumor and intratumor heterogeneity in the effective microvascular permeability constant, P(eff), of an 82 kDa macromolecule in an attempt to identify possible causes of the inadequate and heterogeneous uptake. Tumors of two human melanoma xenograft lines (A-07 and R-18) were included in the study. Human serum albumin with 30 gadopentetate dimeglumine units per molecule was used as a model molecule of macromolecular therapeutic agents. P(eff) was measured in manually defined regions of interest, corresponding to a whole tumor (ROI(WHOLE)) or to subregions of a tumor (ROIs(SUB)). The P(eff) of the ROI(WHOLE) of individual tumors ranged from 1.4 x 10(-7) cm/s to 2.8 x 10(-7) cm/s (A-07) and from 7.7 x 10(-8) cm/s to 3.2 x 10(-7) cm/s (R-18). P(eff) decreased with increasing tumor volume in R-18, but was independent of tumor volume in A-07. The intratumor heterogeneity in P(eff) exceeded the intertumor heterogeneity in both tumor lines. Some ROIs(SUB) showed P(eff) values that were similar to or slightly higher than the P(eff) values of albumin in normal tissues. Our observations suggest that inadequate and heterogeneous uptake of macromolecular therapeutic agents in tumor tissue is partly a result of low and heterogeneous microvascular permeability. However, the microvascular wall is probably not the major transport barrier to macromolecules in A-07 and R-18 tumors, as most individual tumors and individual tumor subregions showed high P(eff) values, i.e. values that are up to 10-fold higher than those of normal tissues.  相似文献   

15.
In this work, the activation of heat-sensitive trans-gene by high-intensity focused ultrasound (HIFU) in a tumor model was investigated. 4T1 cancer cells (2 x 10(6)) were inoculated subcutaneously in the hind limbs of Balb/C mice. The tumors were subsequently transducted on day 10 by intratumoral injection of a heat-sensitive adenovirus vector (Adeno-hsp70B-Luc at 2 x 10(8) pfu/tumor). On day 11, the tumors were heated to a peak temperature of 55, 65, 75, or 85 degrees C within 10-30 s at multiple sites around the center of the tumor by a 1.1- or 3.3-MHz HIFU transducer. Inducible luciferase gene expression was increased from 15-fold to 120-fold of the control group following 1.1-MHz HIFU exposure. Maximum gene activation (120-fold) was produced at a peak temperature of 65-75 degrees C one day following HIFU exposure and decayed to baseline within 7 days. HIFU-induced gene activation (75 degrees C-10 s) could be further improved by using a 3.3-MHz transducer and a dense scan strategy to 170-fold. Thermal stress, rather than nonthermal mechanical stress, was identified as the primary physical mechanism for HIFU-induced gene activation in vivo. Overall, these observations open up the possibility for combining HIFU thermal ablation with heat-regulated gene therapy for cancer treatment.  相似文献   

16.
The visualization of the vascular network in tumors down to the smallest vessels requires high spatial resolution and reasonable contrast. Stained corrosion casts of the microvasculature network guarantee superior X‐ray absorption contrast and highest reproduction fidelity. Tomography of a centimeter‐size tumor, however, is unfeasible at the spatial resolution needed to reveal the smallest vessels. Therefore, local tomography has been performed to visualize the smallest capillaries within the region of interest. These three‐dimensional data show the detailed morphology, but the reconstructed absorption coefficients obtained in local tomography differ substantially from the absorption coefficients retrieved from the less detailed global tomography data. This paper deals with the adaptation of local tomography data using the global data and considers two‐parameter histogram matching of the radiographs, sinogram extension, and multi‐parameter cupping correction. It is demonstrated that two‐parameter histogram matching of the radiographs already provides reasonable agreement. The change of the lens in front of the detector's camera, however, significantly affects the obtained local X‐ray absorption coefficients in the tomograms predominantly owing to the dissimilar point‐spread functions of the two configurations used, and much less to the fact that one of the data sets was acquired in a local geometry.  相似文献   

17.
《Magnetic resonance imaging》1999,17(7):1001-1010
We investigated whether the simultaneous use of paramagnetic contrast medium and 3D on-resonance spin lock (SL) imaging could improve the contrast of enhancing brain tumors at 0.1 T. A phantom containing serial concentrations of gadopentetate dimeglumine (Gd-DTPA) in cross-linked bovine serum albumin (BSA) was imaged. Eleven patients with histologically verified glioma were also studied. T1-weighted 3D gradient echo images with and without SL pulse were acquired before and after a Gd-DTPA injection. SL effect, contrast, and contrast-to-noise ratio (CNR) were calculated for each patient. In the glioma patients, the SL effect was significantly smaller in the tumor than in the white and gray matter both before (p = 0.001, p = 0.025, respectively), and after contrast medium injection (p < 0.001, p < 0.001, respectively). On post-contrast images, SL imaging significantly improved tumor contrast (p = 0.001) whereas tumor CNR decreased slightly (p = 0.024). The combined use of SL imaging and paramagnetic Gd-DTPA contrast agent offers a modality for improving tumor contrast in magnetic resonance imaging (MRI) of enhancing brain tumors. 3D gradient echo SL imaging has also shown potential to increase tissue characterization properties of MR imaging of human gliomas.  相似文献   

18.
OBJECTIVES: The characterization of tumor vasculature is essential in studying tumor physiology. The aim of this study was to develop a new method - based on water proton MR density measurements, in combination with ultrasmall superparamagnetic iron oxide (USPIO) administration - to measure absolute blood volume (BV) in murine colon carcinoma. MATERIALS AND METHODS: MRI experiments were performed at 7 T. CPMG imaging was performed on subcutaneous murine colon carcinoma in six mice before and after administration of an USPIO blood-pool contrast agent. Density maps were obtained from the signal amplitude at TE=0 of the CPMG decay fit. Post-USPIO density maps were subtracted from pre-USPIO density maps to quantitatively yield absolute tumor BV maps. In a separate group of mice (n=6), the relative vascular area (RVA) of tumors was determined by immunohistochemistry. RESULTS: Ultrasmall superparamagnetic iron oxide administration resulted in a small decrease in the water proton MR density. The BV averaged over the six tumors was 4.6+/-1.6%. The value of the RVA measured by immunohistochemical staining was equal to 3.9+/-2.2%. CONCLUSIONS: After administration of an USPIO blood-pool agent (T(2) relaxivity > 100 mM(-1) s(-1)), the blood water protons become MRI invisible, and pixel-by-pixel BV map can be obtained by subtracting the calculated post-USPIO density map from the pre-USPIO density map. The value of absolute BV obtained with this novel MR approach is in good agreement with the value of the relative vascular measured by immunohistochemical staining.  相似文献   

19.
对建立的肝癌H22荷瘤小鼠实体瘤体局部注射188Re后,采用CRCR-15型核素测量仪分别测定1和24h瘤体内放射性计数,计算188Re注入瘤体内24h内照射吸收剂量以及放射性滞留率。188Re-S注射至肿瘤内后,1和24h放射性药物滞留要高于单纯188Re注射液,188Re-S(0.1mCi)和(0.2mCi)组24h瘤体内照射剂量分别为159.78和361.52Gy。病理学检查结果:(1)模型组,瘤细胞生长旺盛,肿瘤内新生微血管丰富;(2)治疗组,瘤组织生长受到不同程度的抑制,瘤细胞生长稀疏,微血管减少,坏死区由瘤组织外周向中心渐进。电镜观察显示,188Re-S(0.1mCi)治疗组可见肿瘤组织细胞凋亡小体。将188Re-S置入小肝癌H22荷瘤小鼠实体瘤局部,在肿瘤局部形成高活度放射性聚集区,起到靶向治疗肿瘤作用的同时,可减少全身用量,以降低毒副作用。  相似文献   

20.
We studied the changes of tumor size after gene therapy treatment and its relationship with the changes of vascular volume as measured by dynamic contrast-enhanced magnetic resonance imaging (MRI), to investigate whether the vascular changes is predictive of tumor regression. The study was carried out using a spontaneously regressing rat tumor model (C6 Glioma grown subcutaneously in rats). Three rats were treated with recombinant adenoviruses expressing three genes, mouse interleukin 1-alpha (IL1-alpha), mouse interferon gamma (IFN-gamma), and human transforming growth factor beta (TGF-beta), one from each kind. Two rats were treated with saline as controls. Longitudinal studies were performed to monitor the changes of tumor volume (based on T(2)-weighted images) and the vascular volume (based on dynamic contrast enhanced images). In untreated animals, tumor regression was preceded by several days with a decrease in vascular volume. When the tumor growth was perturbed by expression of mouse IL-1alpha, the increase in vascular volume was correlated with the continuing growth in size, and the decrease in vascular volume was predictive of the onset of tumor regression. As new advances in immunotherapy in cancer treatment emerge, the ability to determine the efficacy of therapy as early as possible will enable optimization of treatment regiments. The vascularity changes measured by dynamic MRI may provide a means to serve for this purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号