首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azafullerenium carbocation, C59N+, shows photoinduced electron transfer (PET) reactivity toward benzyltrimethylsilane. The reaction between (C59N)2 and benzyltrimethylsilane gives three different aza[60]fullerene monoadducts depending on the reaction conditions used.  相似文献   

2.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

3.
A major handicap towards the exploitation of radicals is their inherent instability. In the paramagnetic azafullerenyl radical C59N., the unpaired electron is strongly localized next to the nitrogen atom, which induces dimerization to diamagnetic bis(azafullerene), (C59N)2. Conventional stabilization by introducing steric hindrance around the radical is inapplicable here because of the concave fullerene geometry. Instead, we developed an innovative radical shielding approach based on supramolecular complexation, exploiting the protection offered by a [10]cycloparaphenylene ([10]CPP) nanobelt encircling the C59N. radical. Photoinduced radical generation is increased by a factor of 300. The EPR signal showing characteristic 14N hyperfine splitting of C59N.? [10]CPP was traced even after several weeks, which corresponds to a lifetime increase of >108. The proposed approach can be generalized by tuning the diameter of the employed nanobelts, opening new avenues for the design and exploitation of radical fullerenes.  相似文献   

4.
Takeharu Haino 《Tetrahedron》2006,62(9):2025-2035
This paper presents the synthesis of the fullerene hosts based on the calix[5]arenes and their binding properties. Calix[5]arenes 1a, 2, 3a bind C60 or C70 in organic solvents. The solvent effect of the fullerene complexation was clearly observed; the association constant decreases in a solvent with high solubility for C60. Covalently linked double-calix[5]arenes 4-6 were also investigated on their binding properties for fullerenes in organic solvents. Their binding abilities for both C60 and C70 are extremely high in toluene solution. Higher binding selectivity toward C70 is observed by all the double-calix[5]arenes. The selectivity of 5a toward C70/C60 is highest in toluene with a value of 10. The structures of the supramolecular complexes of the calix[5]arene hosts and C60 or C70 were investigated by using 1H and 13C NMR studies. The molecular mechanics calculation and X-ray structure reveal that the interior of the calix[5]arene is complementary to the exterior of C60 molecule. In contrast, the host-guest complexes of C70 with the simple calix[5]arenes take many conformational options due to its less symmetric shape. The molecular mechanics calculation and our chemical shift simulation nicely worked to estimate the reliable structures; the calix[5]arene cavity takes up C70 molecule, and the C70 molecule tilts significantly from the C5 axis of the calix[5]arene. In the case of the host-guest complex of C70 with the double-calix[5]arene, the molecular dynamics simulation of the host-guest complex represented the realistic movement of the bound C70 inside the cavity. The combination of the molecular dynamics simulation and the chemical shift simulation of the host-guest complex suggested that the C70 molecule rapidly moves inside the cavity.  相似文献   

5.
Copolymerization of fullerene (C60) with methyl methacrylate (MMA) was carried out using triphenylbismuthonium ylide (abbreviated as Ylide) as a novel initiator in dioxan at 60°C for 4 h in a dilatometer under a nitrogen atmosphere. The reaction follows ideal kinetics: Rp∝ [Ylide]0.5[C60]?1.0[MMA]1.0. The rate of polymerization increases with an increase in concentration of initiator and MMA. However, it decreases with increasing concentration of fullerene due to the radical scavenging effect of fullerene. The overall activation energy of copolymerization was estimated to be 57 KJ mol?1. The fullerene-MMA copolymers (C60-MMA) were characterized by FTIR, UV–Vis, NMR and GPC analyses.  相似文献   

6.
A ruthenium complex, porphyrin sensitizer, fullerene acceptor molecular pentad has been synthesized and a long‐lived hole–electron pair was achieved in aqueous solution by photoinduced multistep electron transfer: Upon irradiation by visible light, the excited‐state of a zinc porphyrin (1ZnP*) was quenched by fullerene (C60) to afford a radical ion pair, 1,3(ZnP.+‐C60.−). This was followed by the subsequent electron transfer from a water oxidation catalyst unit (RuII) to ZnP.+ to give the long‐lived charge‐separated state, RuIII‐ZnP‐C60.−, with a lifetime of 14 μs. The ZnP worked as a visible‐light‐harvesting antenna, while the C60 acted as an excellent electron acceptor. As a consequence, visible‐light‐driven water oxidation by this integrated photosynthetic model compound was achieved in the presence of sacrificial oxidant and redox mediator.  相似文献   

7.
曾和平 《中国化学》2002,20(10):1007-1011
Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.  相似文献   

8.
Fullerols of C60 and of C70 [C60(OH)n, C70(OH)m], water-soluble fullerene derivatives, unlike some other fullerene derivatives (such as C60 (C4H6O), C60 (C3H7N) and C60 [C(COOEt)2]x), do not result in excited triplet state but in ionization via monophotonic process in aqueous solutions with 248 nm laser. The quantum yields of formation of hydrated electron (Φe ) are determined to be 0.08 and 0.11 for fullerols of C60 and of C70 respectively at room temperature (ca. 15°C) with KI solution used as reference. By laser flash photolysis and oxidation of sulfate radical anion SO4 , the fullerol radical cation or neutral radical of C60 is confirmed to be existent and the transient absorption spectra of fullerol radical cation of C70 are observed for the first time. Project supported by the National Natural Science Foundation of China  相似文献   

9.
The complex of [10]cycloparaphenylene ([10]CPP) with bis(azafullerene) (C59N)2 is investigated experimentally and computationally. Two [10]CPP rings are bound to the dimeric azafullerene giving [10]CPP?(C59N)2?[10]CPP. Photophysical and redox properties support an electronic interaction between the components especially when the second [10]CPP is bound. Unlike [10]CPP?C60, in which there is negligible electronic communication between the two species, upon photoexcitation a partial charge transfer phenomenon is revealed between [10]CPP and (C59N)2 reminiscent of CPP‐encapsulated metallofullerenes. Such an alternative electron‐rich fullerene species demonstrates C60‐like ground‐state properties and metallofullerene‐like excited‐state properties opening new avenues for construction of functional supramolecular architectures with organic materials.  相似文献   

10.
Fourier transform EPR spectroscopy was employed in studying the electron transfer (ET) reaction and the quenching mechanisms of the photoexcited triplet state of C60 as electron acceptor and N,N,N′,N′-tetramethylbenzidine (NTMB) as electron donor in benzonitrile solution. The ET reaction product, the cation radical NTMB*+, interacts with 3*C60, leading to photoinduced electron polarization of NTMB*+ via triplet-doublet mixing mechanism combined with triplet mechanism. The quenching of 3*C60 and the polarization behavior of NTMB*+ are discussed.  相似文献   

11.
The reaction of [60]fullerene with 2-azidopyrimidines affords fullerenoimidazopyrimidines, whose electron affinity is higher than that of nonmodified C60.  相似文献   

12.
Novel difluoromethylenated [70]fullerene derivatives, C70(CF2)n (n=1–3), were obtained by the reaction of C70 with sodium difluorochloroacetate. Two major products, isomeric C70(CF2) mono‐adducts with [6,6]‐open and [6,6]‐closed configurations, were isolated and their homofullerene and methanofullerene structures were reliably determined by a variety of methods that included X‐ray analysis and high‐level spectroscopic techniques. The [6,6]‐open isomer of C70(CF2) constitutes the first homofullerene example of a non‐hetero [70]fullerene derivative in which functionalisation involves the most reactive bond in the polar region of the cage. Voltammetric estimation of the electron affinity of the C70(CF2) isomers showed that it is substantially higher for the [6,6]‐open isomer (the 70‐electron π‐conjugated system is retained) than the [6,6]‐closed form, the latter being similar to the electron affinity of pristine C70. In situ ESR spectroelectrochemical investigation of the C70(CF2) radical anions and DFT calculations of the hyperfine coupling constants provide evidence for the first example of an inter‐conversion between the [6,6]‐closed and [6,6]‐open forms of a cage‐modified fullerene driven by an electrochemical one‐electron transfer. Thus, [6,6]‐closed C70(CF2) constitutes an interesting example of a redox‐switchable fullerene derivative.  相似文献   

13.
A new [60]fullerene diol is synthesized in good yield, in two steps starting from reaction of C602− anion with the benzylideneacetal derived from 2,2-bis(iodomethyl)-1,3-propanediol. The corresponding [60]fullerene bis-mesylate is also formed in a similar way starting from bis-iodo bis-mesylate compound in the same series. The scope of this fullerene diol in synthesis is exemplified by its easy esterification with 4-formyl benzoyl chloride.  相似文献   

14.
Donor–acceptor distance, orientation, and photoexcitation wavelength are key factors in governing the efficiency and mechanism of electron‐transfer reactions both in natural and synthetic systems. Although distance and orientation effects have been successfully demonstrated in simple donor–acceptor dyads, revealing excitation‐wavelength‐dependent photochemical properties demands multimodular, photosynthetic‐reaction‐center model compounds. Here, we successfully demonstrate donor– acceptor excitation‐wavelength‐dependent, ultrafast charge separation and charge recombination in newly synthesized, novel tetrads featuring bisferrocene, BF2‐chelated azadipyrromethene, and fullerene entities. The tetrads synthesized using multistep synthetic procedure revealed characteristic optical, redox, and photo reactivities of the individual components and featured “closely” and “distantly” positioned donor–acceptor systems. The near‐IR‐emitting BF2‐chelated azadipyrromethene acted as a photosensitizing electron acceptor along with fullerene, while the ferrocene entities acted as electron donors. Both tetrads revealed excitation‐wavelength‐dependent, photoinduced, electron‐transfer events as probed by femtosecond transient absorption spectroscopy. That is, formation of the Fc+–ADP–C60.? charge‐separated state upon C60 excitation, and Fc+–ADP.?–C60 formation upon ADP excitation is demonstrated.  相似文献   

15.
V.V. Bashilov 《Tetrahedron》2008,64(49):11291-11295
Single-crystal X-ray study of 6,9,12,15,18-pentamethyl-1,6,9,12,15,18-hexahydro(C60-Ih)[5,6]fullerene (C60Me5H) has been reported. In crystal packing, the stacking self-organization of molecules is realized. It is concluded that the formation of such polar columns is a general rule for crystals of C60R5H independent of the nature of the R group. An ESR spectrum of the stable fullerenyl radical of the cyclopentadienyl-type, C60Me5, was observed in a sample of the pentamethylated[60]fullerene. Rotation of methyl groups around C-C bonds is restricted on the ESR scale time and therefore protons within each methyl group are non-equivalent.  相似文献   

16.
The novel C60–styrene copolymers with different C60 contents were prepared in sodium naphthalene-initiated anionic polymerization reactions. Like the pure polystyrene, these copolymers exhibited the high solvency in many common organic solvents, even for the copolymer with high C60 content. In the polymerization process of C60 with styrene an important side reaction, i.e., reaction of C60 with sodium naphthalene, would occur simultaneously, whereas crosslinking reaction may be negligible. 13C-NMR results provided an evidence that C60 was incorporated covalently into the polystyrene backbone. In contrast to pure polystyrene, the TGA spectrum of copolymer containing ∼ 13% of C60 shows two plateaus. The polystyrene chain segment in copolymer decomposed first at 300–400°C. Then the fullerene units reptured from the corresponding polystyrene fragments attached directly to the C60 cores at 500–638°C. XRD evidence indicates that the degree of order of polymers increases with the fullerene content increased in terms of crystallography. Incorporation of C60 into polystyrene results in the formation of new crystal gratings or crystallization phases. In addition, it was also found that [60]fullerene and its polyanion salts [C60n(M+)n, M = Li, Na] cannot be used to initiate the anionic polymerization of some monomers such as acrylonitrile and styrene, etc.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2653–2663, 1998  相似文献   

17.
The synthesis and photophysics of a series of porphyrin-fullerene (P-C60) dyads in which the two chromophores are linked by conformationally flexible polyether chains is reported. Molecular modeling indicates the two moieties adopt a stacked conformation in which the two chromophores are in close proximity. Photoexcitation of the free base dyads in polar solvents such as tetrahydrofuran and benzonitrile, causes electron transfer (ET) to generate charge-separated radical pair (CSRP) states, which were directly detected using transient absorption (TA) techniques. In nonpolar solvents such as toluene, where CSRP states were not directly detected, fullerene triplet state states were formed, according to TA studies as well as singlet oxygen sensitization measurements. The low value of the quantum efficiency for sensitized formation of singlet molecular oxygen [O2(1Δg)] in toluene and chloroform indicates that singlet energy transduction to give H2P-1C60*, followed by intersystem crossing to H2P-3C60* and energy transfer to 3O2, is not the operative mechanism. Rather, a mechanism is proposed involving ET to give CSRP states followed by exergonic charge recombination to eventually generate fullerene triplets. Such a mechanism has been demonstrated experimentally for structurally related P-C60 dyads. For the corresponding ZnP-C60 dyads with flexible linkers, only photoinduced ET to generate long-lived CSRP states is observed. Photoinduced charge separation in these dyad systems is extremely rapid, consistent with a through space rather than through-bond mechanism. Charge recombination is up to three orders of magnitude slower, indicating this process occurs in the inverted region of the Marcus curve that relates ET rates to the thermodynamic driving force. These observations once again demonstrate the advantages of incorporating fullerenes as electron acceptor components in photosynthetic model systems.  相似文献   

18.
Summary.  The generalized Pauling bond order was enumerated in the C60 fullerene cage molecule (truncated icosahedral symmetry). This index measures chemical similarity in fullerene derivatives such as dihydrofullerene (C60H2), anionized monohydrofullerene (C60H), N-substituted monohydrofullerene (C59NH), the fullerene dimer ((C60)2), and the dianionic fullerene dimer ((C60)2 2−). It is also useful in judging the chemical stability of isomers. Received October 9, 2001. Accepted November 9, 2001  相似文献   

19.
[60]Fullerene (C60)-calix[n]areneinteractions were studied in toluene:MeCN = 10:1 (v/v)using an electrochemical method. In the presence ofhomooxacalix[3]arenes and calix[5]arenes, bothEpc and pa shifted to the negativepotential, whereas they were scarcely affected by theaddition of calix[4]arenes. The2values electrochemically determined forthe association with C60 - are generallysmaller than the 1 valuesspectroscopically determined for the association withC60. The tendency indicates that thecharge-transfer-type interaction is one of thedriving forces for C60 inclusion.thanks|Author for correspondence  相似文献   

20.
The functionalisation of C60 fullerene with 2,3-dimethylene-1,4-dioxane (I) and 2,5-dioxabicyclo [4.2.0]octa-1(8),6-diene (II) was investigated by the use of density functional theory calculations in terms of its energetic, structural, field emission, and electronic properties. The functionalisation of C60 with I was previously reported experimentally. The I and II molecules are preferentially attached to a C—C bond shared and located between two hexagons of C60 via [4+2] and [2+2] cycloadditions bearing reaction energies of ?15.9 kcal mol?1 and ?72.4 kcal mol?1, respectively. The HOMO-LUMO energy gap and work function of C60 are significantly reduced following completion of the reactions. The field electron emission current of the C60 surface will increase after functionalisation of either the I or II molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号