首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
稀土离子对钙调蛋白与蜂毒素作用的影响   总被引:4,自引:0,他引:4  
分别用钙调蛋白和蜂毒素的内源荧光光谱以及铽离子的敏化荧光光谱考察了铽离子对钙调蛋白构象变化以及对钙调蛋白与蜂毒素相互作用的影响 .结果表明 ,铽离子首先结合在钙调蛋白的第Ⅰ和第Ⅱ位点 ,铽离子不影响钙调蛋白与蜂毒素的相互作用 ,蜂毒素与钙调蛋白作用后不影响铽离子在钙调蛋白上的键合顺序 .傅里叶变换红外光谱结果表明三价的镧离子与钙调蛋白作用使钙调蛋白的α螺旋结构增加 ,β折叠结构减少 ,与钙离子对它的二级结构影响相类似 .稀土离子在钙调蛋白 -蜂毒素复合体系中主要与钙调蛋白作用 .  相似文献   

2.
Noncovalent association of Ca2+-loaded calmodulin with a target peptide melittin was studied by electrospray ionization mass spectrometry (ESI-MS). ESI-MS does not reveal any binding of the apocalmodulin to the melittin. Partial loading of calmodulin with calcium leads to weak association with melittin. Upon binding of two calcium ions to the protein, changes in the conformation of calmodulin occur; these changes are sufficient to promote binding of melittin. Saturation of the protein with Ca2+ (a distribution of up to seven calcium ions is detected) induces a large increase of the binding to melittin. The stoichiometry of peptide binding to calmodulin is 1:1.  相似文献   

3.
设计合成了蜂毒肽片断及其类似物: Mel15, Mel15(8F)和Mel15(7P), 这些多肽与钙调素有很强的结合力, 而且链段很短, 因此它们可作为钙调素可结合蛋白质的结合部位的模型。本文采用光谱法研究了它们与钙调素的相互作用。荧光发射光谱法结果表明, 多肽Mel15在与钙调素相互作用时, 肽链中的Trp基团的微环境变得更加疏水, 说明Mel15中的Trp残基可能与钙调素的疏水性表面靠近。紫外差谱测试表明, 只有当钙调素分子结合2个Ca^2^+后, 才可以与多肽Mel15(8F)结合。圆二色谱法研究表明, 多肽与钙调素结合后多肽分子和钙调素分子的α-螺旋结构的含量都被诱导而增加, 结合力越大, 则越多的残基被诱导形成α-螺旋结构。  相似文献   

4.
Calmodulin is an EF hand calcium binding protein. Its binding affinities to various protein/peptide targets often depend on the conformational changes induced by the binding of calcium. One such target is melittin, which binds tightly to calmodulin in the presence of calcium, and inhibits its function. Chemical cross-linking combined with Fourier transform ion cyclotron resonance mass spectrometry has been employed to investigate the coordination of calmodulin and melittin in the complex at different concentrations of calcium. This methodology can be used to monitor structural changes of proteins induced by ligand binding, and study the effects these changes have on non- covalent interactions between proteins. Cross-linking results indicate that the binding place of the first melittin in the calcium free calmodulin form is the same as in the calcium loaded calmodulin/melittin complex.  相似文献   

5.
In the present study we describe conditions that permit the characterization of noncovalent protein–substrate complexes in aqueous solution by microspray electrospray ionization-mass spectrometry (ESI-MS), using a heated transfer capillary at low temperature (45 °C). Specifically, we examined the binding of calmodulin to two polypeptides; the calmodulin-binding domain of calmodulin-dependent protein kinase II (CamK-II) and melittin. Calmodulin, a well known calcium-binding protein, binds to a number of small amphipathic peptides in a calcium-dependent manner. Our results directly show that both peptides form equimolar complexes with calmodulin only in the presence of calcium. The stoichiometry necessary for the formation of each complex was 1:1:4 for calmodulin:peptide (melittin or CamK-II):Ca2+, respectively. Furthermore, it is demonstrated that the detection of the complex in ESI-MS is source temperature dependent.  相似文献   

6.
For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.  相似文献   

7.
The prion protein (PrP) is a Cu(2+)-binding cell-surface glycoprotein. Using PrP peptide fragments, by means of potentiometric, spectroscopic and thermodynamic techniques, we have shown that Cu(2+) ions bind to the region comprising His-96, His-111 and the octarepeat domain within residues 60-91. Cu(2+) may bind in different modes, which strongly depend both on His position within the peptide sequence and on the adjacent residues. We have used a series of protected oligopeptides having His at the C- or the N-terminus, inducing different binding modes to amide nitrogens around the His residue, either towards the N- or C-terminus. His imidazole acts as an anchoring site for Cu(2+) and then binding to ionized amide nitrogens follows. When it is directed towards the C-terminus the formation of a less stable seven-membered chelate ring with a {N(im), N(-)} binding mode occurs. When coordination goes towards the N-terminus the thermodynamically more stable six-membered chelate ring is formed. NMR data suggest that both the coordination modes are possible for the model peptides; however, the thermodynamic measurements show that they only slightly differ in energy and the influence of the adjacent amino acid residues can address the coordination toward the C- or the N-terminus.  相似文献   

8.
A new approach is reported that combines synchrotron radiolysis and mass spectrometry to probe the surface of proteins. Hydroxyl radicals produced upon the radiolysis of protein solutions with synchrotron light for several milliseconds result in the reaction of amino acid side chains. This results in the formation of stable oxidation products where the level of oxidation at the reactive residues is influenced by the accessibility of their side chains to the bulk solvent. The aromatic and sulfur-containing residues have been found to react preferentially in accord with previous peptide studies. The sites of oxidation have been determined by tandem mass spectrometry. The rate of oxidation at these reactive markers has been measured for each of the proteolytic peptides as a function of exposure time based on the relative proportion of modified and unmodified peptide ions detected by mass spectrometry. Oxidation rates have been found to correlate closely with a theoretical measure of the accessibility of residue side chains to the bulk solvent in the native protein structure. The synchrotron-based approach is able to distinguish the relative accessibility of the tryptophan residue side chains of lysozyme at positions 62 and 123 from each other and all other tryptophan residues based on their rates of oxidation.  相似文献   

9.
Calmodulin-dependent protein kinase (CAMK) is physiologically activated in fertilized human oocytes and is involved in the Ca2+ response pathways that link the fertilization calmodulin signal to meiosis resumption and cortical granule exocytosis. The kinase has an unstructured C-terminal tail that can be recognized and bound by the PDZ5 domain of its cognate partner, the multi-PDZ domain protein (MUP). In the current study, we reported a rational biomolecular design of halogen-bonding system at the complex interface of CAMK’s C-terminal peptide with MUP PDZ5 domain by using high-level computational approaches. Four organic halogens were employed as atom probes to explore the structural geometry and energetic property of designed halogen bonds in the PDZ5–peptide complex. It was found that the heavier halogen elements such as bromine Br and iodine I can confer stronger halogen bond but would cause bad atomic contacts and overlaps at the complex interface, while fluorine F cannot form effective halogen bond in the complex. In addition, the halogen substitution at different positions of peptide’s aromatic ring would result in distinct effects on the halogen-bonding system. The computational findings were then verified by using fluorescence analysis; it is indicated that the halogen type and substitution position play critical role in the interaction strength of halogen bonds, and thus the PDZ5–peptide binding affinity can be improved considerably by optimizing their combination.  相似文献   

10.
Immunological response induced by small amino peptide has attracted much recent attention in the field of immunotherapy. Wilms' tumor (WT1) protein is one of the potent tumor antigens inducing immunological response in mouse and human, because WT1 is over expressed in many types of leukemia and various kinds of solid tumors. A 9-mer peptide encoded in WT1 protein (CMTWNQMNL; amino acid 235-243) is known to serve as antigenic peptide for human leukocyte antigen (HLA)-A*2402 molecule. It was reported that the replacement of the second amino residue, which is deeply responsible for the peptide binding to HLA, induced strong immunological response compared to the natural peptide. In this study, 19 kinds of single amino substitutions were introduced at position 2 of this 9-mer WT1 peptide. We performed molecular dynamics simulation on the complex of each of WT1 epitope peptides and HLA-β2 micro globulin (β2m) molecule, and subsequently estimated the binding affinity using molecular mechanics/generalized-Born surface area method combined with normal mode analysis. Our computation indicated that the peptide containing M2Y or M2W mutation showed high binding affinity to the HLA-β2m molecule as well as the natural peptide. We have also examined the role of the residue at position 2 in peptide binding to HLA-β2m. The calculation showed that van der Waals interaction between the side chain of the residue at position 2 and hydrophobic residues inside B-pocket of HLA are important. These findings will be helpful to search other potent peptides that will enhance strong immunological response specific to HLA-A*2402 molecule.  相似文献   

11.
The recent study on the *OH-induced oxidation of calmodulin, a regulatory "calcium sensor" protein containing nine methionine (Met) residues, has supported the first experimental evidence in a protein for the formation of S therefore N three-electron bonded radical complexes involving the sulfur atom of a methionine residue and the amide groups in adjacent peptide bonds. To characterize reactions of oxidized methionine residues in proteins containing multiple methionine residues in more detail, in the current study, a small model cyclic dipeptide, c-(L-Met-L-Met), was oxidized by *OH radicals generated via pulse radiolysis and the ensuing reactive intermediates were monitored by time-resolved UV-vis spectroscopic and conductometric techniques. The picture that emerges from this investigation shows there is an efficient formation of the Met (S therefore N) radicals, in spite of the close proximity of two sulfur atoms, located in the side chains of methionine residues, and in spite of the close proximity of sulfur atoms and oxygen atoms, located in the peptide bonds. Moreover, it is shown, for the first time, that the formation of Met(S therefore N) radicals can proceed directly, via H+-transfer, with the involvement of hydrogen from the peptide bond to an intermediary hydroxysulfuranyl radical. Ultimately, the Met(S therefore N) radicals decayed via two different pH-dependent reaction pathways, (i) conversion into sulfur-sulfur, intramolecular, three-electron-bonded radical cations and (ii) a proposed hydrolytic cleavage of the protonated form of the intramolecular, three-electron-bonded radicals [Met(S therefore N)/Met(S therefore NH)+] followed by electron transfer and decarboxylation. Surprisingly, also alpha-(alkylthio)alkyl radicals enter the latter mechanism in a pH-dependent manner. Density functional theory computations were performed on the model c-(L-Met-Gly) and its radicals in order to obtain optimizations and energies to aid in the interpretation of the experiments on c-(L-Met-L-Met).  相似文献   

12.
Introduction: WW domains are small protein interaction modules found in a wide range of eukaryotic signaling and structural proteins. Five classes of WW domains have been annotated to date, where each class is largely defined by the type of peptide ligand selected, rather than by similarities within WW domains. Class I WW domains bind Pro-Pro-Xxx-Tyr containing ligands, and it would be of interest to determine residues within the domains that determine this specificity.Results: Fourteen WW domains selected Leu/Pro-Pro-Xxx-Tyr containing peptides ligands via phage display and were thus designated as Class 1 WW domains. These domains include those present in human YAP (hYAP) and WWP3, as well as those found in ubiquitin protein ligases of the Nedd4 family, including mouse Nedd4 (mNedd4), WWP1, WWP2 and Rsp5. Comparing the primary structures of these WW domains highlighted a set of highly conserved residues, in addition to those originally noted to occur within WW domains. Substitutions at two of these conserved positions completely inhibited ligand binding, whereas substitution at a non-conserved position did not. Moreover, mutant WW domains containing substitutions at conserved positions bound novel peptide ligands.Conclusions: Class I WW domains contain a highly conserved set of residues that are important in selecting Pro-Xxx-Tyr containing peptide ligands. The presence of these residues within an uncharacterized WW domain can be used to predict its ability to bind Pro-Xxx-Tyr containing peptide ligands.  相似文献   

13.
Useful methodology is described for the synthesis of dehydroalanine residues (II) within peptides. The unnatural amino acid (Se)-phenylselenocysteine (I) can be incorporated into growing peptide chains via standard peptide synthesis procedures. Subsequent oxidative elimination affords a dehydroalanine at the desired position. The oxidation conditions are mild and tolerate functionalities commonly found in peptides, including variously protected cysteine residues. To illustrate its utility, cyclic lanthionines have been synthesized by this method.  相似文献   

14.
In plants, ultraviolet-B radiation (280–315 nm) regulates gene expression and plant morphology through the UV RESPONSE LOCUS 8 (UVR8) photoreceptor. The first signaling event after quantal absorbance is the interaction of the UVR8 C-terminus with the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). The nature of the interaction between these two proteins is hitherto unknown. A protein homology model of the Arabidopsis thaliana COP1 seven-bladed propeller WD40 repeat domain and de novo folds of the C-terminal 27 amino acid (amino acids 397–423) peptide of Arabidopsis UVR8 (UVR8397?423) is herein reported. Using a theoretical computational docking protocol, the interaction between COP1 and UVR8 was predicted. A core motif was identified in UVR8397?423 comprising adjacent hydrophobic residues V410 and P411 together with a charged residue D412, homologous to corresponding motifs in other COP1-binding proteins, such as ELONGATED HYPOCOTYL 5 (HY5), cryptochrome 1 (CRY1), and salt tolerance proteins STO/STH. The protein–protein interaction between the COP1 WD40 repeat domain and UVR8397?423 reveals binding within a region of COP1 overlapping with the binding site for HY5 and the other COP1-interacting proteins. This study provides a framework for understanding docking between UVR8 and COP1, which in turn gives clues for experimental testing of UVR8/COP1 interaction.  相似文献   

15.
In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated.  相似文献   

16.
Metal-catalyzed oxidation (MCO) of proteins is mainly a site-specific process in which one or a few amino acids at metal-binding sites on the protein are preferentially oxidized. The oxidation of proteins by MCO can lead to oxidation of amino acid residue side chains, cleavage of the peptide bonds and formation of covalent protein-protein cross-linked derivatives. In an attempt to elucidate the products of the copper(II)-catalyzed oxidation of the 29-56, M29-D30-56 and Ac-M29-D30-56 fragments of alpha-synuclein, high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) methods and Cu(II)/hydrogen peroxide as a model oxidizing system were employed. The peptide solution (0.50 mM) was incubated at 37 degrees C for 24 h with metal : peptide : hydrogen peroxide 1 : 1 : 4 molar ratio in phosphate buffer, pH 7.4. Oxidation targets for all studied peptides are the histidine residues coordinated to the metal ions. For the M29-D30-56 and Ac-M29-D30-56 peptides the oxidation of the methionine residue to methionine sulfoxide and sulfone is observed. The cleavage of the peptide bond M29-D30 for the M29-D30-56 peptide was detected as metal binding residues. The fragmentations of the M29-D30-56 peptide near the Lys residues were observed supporting the participation of this (Lys) residue in the coordination of the copper(II) ions.  相似文献   

17.
We have investigated the effect of trifluoroleucine substitution on the membrane-binding and tetramerization behavior of melittin. Analogues were synthesized in which Leu 9, Leu 13, and all four intrinsic leucine residues of melittin were replaced by 5,5,5-trifluoroleucine. Both the mono- and tetra-substituted melittins were found to exhibit stronger self-association and enhanced affinity for lipid bilayer membranes, compared to the wild-type peptide. The extent of the observed effects depends on the site of introduction of trifluoroleucine and, in the case of substitution at position 13, on the stereochemistry of the trifluoroleucine side chain. Analysis of the membrane association isotherms is consistent with aggregation of fluorinated melittins within the lipid bilayer. These results suggest that fluorocarbon-hydrocarbon separation, in addition to an increase in hydrophobic character, contributes to enhanced membrane binding.  相似文献   

18.
Human epidermal growth factor receptor (EGFR) plays a central role in the pathological progression and metastasis of lung cancer; the development and clinical application of therapeutic agents that target the receptor provide important insights for new lung cancer therapies. The tumor-suppressor protein MIG6 is a negative regulator of EGFR, which can bind at the activation interface of asymmetric dimer of EGFR kinase domains to disrupt dimerization and then inactivate the kinase (Zhang X. et al. Nature 2007, 450: 741–744). The protein adopts two separated segments, i.e. MIG6segment 1 and MIG6segment 2, to directly interact with EGFR. Here, computational modeling and analysis of the intermolecular interaction between EGFR kinase domain and MIG6segment 2 peptide revealed that the peptide is folded into a two-stranded β-sheet composed of β-strand 1 and β-strand 2; only the β-strand 2 can directly interact with EGFR activation loop, while leaving β-strand 1 apart from the kinase. A C-terminal island within the β-strand 2 is primarily responsible for peptide binding, which was truncated from the MIG6segment 2 and exhibited weak affinity to EGFR kinase domain. Structural and energetic analysis suggested that phosphorylation at residues Tyr394 and Tyr395 of truncated peptide can considerably improve EGFR affinity, and mutation of other residues can further optimize the peptide binding capability. Subsequently, three derivative versions of the truncated peptide, including phosphorylated and dephosphorylated peptides as well as a double-point mutant were synthesized and purified, and their affinities to the recombinant protein of human EGFR kinase domain were determined by fluorescence anisotropy titration. As expected theoretically, the dephosphorylated peptide has no observable binding to the kinase, and phosphorylation and mutation can confer low and moderate affinities to the peptide, respectively, suggesting a good consistence between the computational analysis and experimental assay.  相似文献   

19.
Surface Plasmon Resonance (SPR) is a new technique for the biomolecular interaction analysis developed from 1990. Compared with traditional methods of analysis, SPR has its obvious advantages: fast-speed, no-labeling, real-time and micro sample requiring, etc.. In this case, it has been applied extensively to the studies in life research1,2. Calmodulin (CaM) is a ubiquitous calcium-binding protein in eucaryotic cells and serves as a multifunctional regulator in variety of cellular proces…  相似文献   

20.
Abstract— UV irradiation of lac repressor modifies the fluorescence of the protein and its binding to the inducer and to the operator. It has been previously shown that the total loss of fluorescence is due to photooxidation of, on average, one of the two tryptophyl residues of each protomer. The present work explains this observation by showing that N-formylkynurenine formed at one site is responsible for the quenching of fluorescence of the other tryptophan via an energy transfer process. Consequently, no photoreaction occurs for the second tryptophyl residue. Photodamage of the two tryptophyl residues (in position 201 and 220) of each protomer were assayed by spectrofluorometric titration in the pH range from 8.5 to 5. For repressor alone, both residues are equally photodamaged. In the presence of the inducer isopropyl-β-D-thio-galactoside, IPTGt, residue 220 is completely protected, and tryptophan 201 is slightly more exposed to photooxidation. In the presence of antiinducer, residue 220 is only partially protected. Our results are discussed in terms of conformational changes triggered by the two types of ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号