首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Jianlong Wang 《Talanta》2009,79(1):72-76
Features of Au NPs-aptamer conjugates as a powerful competitive reagent to substitute antibody in enhancing surface plasmon resonance spectroscopy (SPR) signal for the detection of small molecule are explored for the first time. In order to evaluate the sensing ability of Au NPs-aptamer conjugates as a competitive reagent, a novel SPR sensor based on indirect competitive inhibition assay (ICIA) for the detection of adenosine is constructed by employing the competitive reaction between antiadenosine aptamer with adenosine and antiadenosine aptamer with its partial complementary ss-DNA. The partial complementary ss-DNA of antiadenosine aptamer is firstly immobilized on SPR gold film as sensing surface. When the Au NPs-antiadenosine aptamer conjugates solution is added to SPR cell in the absence of adenosine, Au NPs-antiadenosine aptamer conjugates is adsorbed to SPR sensor by the DNA hybridization reaction, and results in a large change of SPR signal. However, the change of SPR signal is decreased when the mixing solution of adenosine with Au NPs-antiadenosine aptamer conjugates is added. This is because adenosine reacts with antiadenosine aptamer in Au NPs-antiadenosine aptamer conjugates and changes its structure from ss-DNA to tertiary structure, which cannot hybridize with its partial complementary ss-DNA immobilized on SPR gold surface. Based on this principle, a SPR sensor for indirect detection of adenosine can be developed. The experimental results confirm that the SPR sensor possesses a good sensitivity and a high selectivity for adenosine, which indirectly confirms that Au NPs-aptamer conjugates is a powerful competitive reagent. More significantly, it can be used to develop other SPR sensors based on ICIA to detect different targets by changing the corresponding type of aptamer in Au NPs-aptamer conjugates.  相似文献   

2.
A fluorescence detection system for a microfluidic device using an organic light-emitting diode (OLED) as the excitation light source and a charge-coupled device (CCD) as the photo detector was developed. The OLED was fabricated on a glass plate by photolithography and a vacuum deposition technique. The OLED produced a green luminescence with a peak emission at 512 nm and a half bandwidth of 55 nm. The maximum external quantum efficiency of the OLED was 7.2%. The emission intensity of the OLED at 10 mA/cm(2) was 13 μW (1.7 mW/cm(2)). The fluorescence detection system consisted of the OLED device, two band-pass filters, a five microchannel poly(dimethylsiloxane) (PDMS) microfluidic device and a linear CCD. The fluorescence detection system was successfully used in a flow-based enzyme-linked immunosorbent assay on a PDMS microfluidic device for the rapid determination of immunoglobulin A (IgA), a marker for human stress. The detection limit (S/N=3) for IgA was 16.5 ng/mL, and the sensitivity was sufficient for evaluating stress. Compared with the conventional 96-well microtiter plate assay, the analysis time and the amounts of reagent and sample solutions could all be reduced.  相似文献   

3.
Gaspar A  Gomez FA 《Electrophoresis》2012,33(12):1723-1728
A miniaturized capillary electrophoresis system coupled to a surface plasmon resonance (SPR) sensor on a microfluidic platform fabricated from PDMS is detailed. A previously described split-flow injection technique is first utilized to manipulate sample into the microfluidic chip, followed by separation within the fused-silica capillary and final off-capillary detection of analytes via SPR. Instead of using commercial SPR flow cells requiring relatively large detection volumes, samples of less than 1 nL volume are utilized. The interface between the CE system and SPR sensor made it possible to detect minute volumes of sample with minimal dispersion. The flow cell has the potential to be applicable to miniaturized flow-injection (FI) systems where submicroliter volumes of sample are frequently only available for analysis. The components present in solution, but not bound to the sensor surface, were also investigated. The sensitivity of the CE-SPR system was similar to that found in UV-spectrometric instruments and nonchromophoric components could also be measured.  相似文献   

4.
Gao ZX  Li HF  Liu J  Lin JM 《Analytica chimica acta》2008,622(1-2):143-149
In this work, a microfluidic chlorine gas sensor based on gas-liquid interface absorption and chemiluminescence detection was described. The liquid chemiluminescence reagent-alkaline luminol solution can be stably sandwiched between two convex halves of a microchannel by surface tension. When chlorine gas was introduced into the micro device, it was dissolved into the interfacial luminol solution and transferred to ClO(-), and simultaneously luminol was excited and chemiluminescence emitted. The emitted chemiluminescence light was perpendicularly detected by a photomultiplier tube on a certain detection region. The remarkable advantage of the detection system is that both adsorption and detection were carried out at the gas-liquid interface, which avoids the appearance of bubbles. The whole analytical cycle including filling CL reagent, sample injection, CL detection and emptying the device was as short as 30 s. The linear concentration range of chlorine gas detection with direct introduction of sample method is from 0.5 to 478 ppm. The detection limit of this method is 0.2 ppm for standard chlorine gas and the relative standard deviation of five determinations of 3.19 ppm spiked chlorine sample was 5.2%.  相似文献   

5.
A flow-based enzyme-linked immunosorbent assay (ELISA) on a polydimethylsiloxane (PDMS) microchip has been developed for the rapid determination of immunoglobulin A (IgA). The analytical principle of this integrated method is the same as the conventional sandwich-type ELISA. A primary antibody (anti-IgA) was adsorbed on the surface of a PDMS microchannel, and then an antigen (IgA) and a secondary antibody (anti-IgA HRP labeled) were reacted successively. The resulting antigen-antibody complex, fixed on the surface of the microchannel, was detected using Amplex® Red and a fluorescent imaging system. The calibration curve of the IgA standard solution was linear in the range of 0-50 ng/mL at the flow rate of 10 μL/min. This flow rate corresponds to the reaction time of 4.8 s. Compared to the conventional assay on a 96-well microtiter plate, the present assay on the microchip dramatically shortened the reaction time necessary for the enzyme-substrate reaction from 30 min to 4.8 s, i.e., to 1/375. The amounts of the reagent and sample were also reduced to 1/100 compared to the 96-well microtiter plate.  相似文献   

6.
Huh YS  Park TJ  Lee EZ  Hong WH  Lee SY 《Electrophoresis》2008,29(14):2960-2969
An active micromixer system utilizing the magnetic force was developed and examined for its ability to facilitate the mixing of more than two fluid flows. The mixing performance of the active micromixer was evaluated in aqueous-aqueous systems including dyes for visual observation. A complete analytical microfluidic system was developed by integrating various functional modules into a single chip, thus allowing cell lysis, sample preparation, purification of intracellular molecules, and subsequent analysis. Upon loading the cell samples and lysis solution into the mixing chamber, the integrated microfluidic device allows efficient cell disruption by rotation of a micromagnetic disk and control of mixing time using the Teflon-coated hydrophobic film as a microvalve. This inflow is followed by separating the cell debris and contaminated proteins from the cell lysate sample using the acrylamide (AAm)-functionalized SPE. The inflow of partially purified cell lysate sample containing the gold binding polypeptide (GBP)-fusion protein was bound onto the gold micropatterns by means of its metal binding affinity. The GBP-fusion method allows immobilization of proteins in bioactive forms onto the gold surface without surface modification suitable for studying antigen-antibody interaction. It was used for the detection of severe acute respiratory syndrome (SARS), an infectious viral disease, as an example case.  相似文献   

7.
A novel microfluidic method of continually detecting and counting beads‐labeled cells from a cell mixture without fluorescence labeling was presented in this paper. The detection system is composed of a microfluidic chip (with a permanent magnet inserted along the channel), a signal amplification circuit, and a LabView® based data acquisition device. The microfluidic chip can be functionally divided into separation zone and detection zone. By flowing the pre‐labeled sample solution, the target cells will be sequentially separated at the separation zone by the permanent magnet and detected and counted at the detection zone by a microfluidic resistive pulse sensor. Experiments of positive separation and detection of T‐lymphocytes and negative separation and detection of cancer cells from the whole blood samples were carried out to demonstrate the effectiveness of this method. The methodology of utilizing size difference between magnetic beads and cell‐magnetic beads complex for beads‐labeled cell detection is simple, automatic, and particularly suitable for beads‐based immunoassay without using fluorescence labeling.  相似文献   

8.
A surface plasmon resonance (SPR) biosensor for the quantification of a neuropeptide substance P (SP) is described based on an inhibition assay using Au colloid-modified calmodulin (Au-CaM) and a target peptide melittin immobilized on carboxymethylated dextran. The modification of CaM with streptavidin Au colloids was achieved in a sample solution by the amine coupling method. The SPR signal sharply increased, corresponding to the formation of a Ca2+-Au-CaM-melittin complex on the sensor surface, and approached a steady state within 5 min. When SP was added to a sample solution, the SPR signal was decreased, due to the formation of a Ca2+-Au-CaM-SP complex in the sample solution. The modification of CaM with streptavidin Au colloids was effective for enhancing the SPR signal for SP. A decrease in the SPR signal was observed for SP in the concentration range from 0.10 to 5.0 microM, whose lower limit was ten-times superior to that (1.0 microM) with unmodified CaM. The response was highly selective to SP and the selectivity was in the order of SP > neurokinin A > neurokinin B > neurotransmitters (glycine, GABA, L-glutamate, acetylcholine, norepinephrine, 5HT) - substance P fragment (1 - 7). The potential use of the present sensor for the quantification of SP in mouse brain extracts is demonstrated.  相似文献   

9.
Zhang Y  Park S  Liu K  Tsuan J  Yang S  Wang TH 《Lab on a chip》2011,11(3):398-406
This paper reports a droplet microfluidic, sample-to-answer platform for the detection of disease biomarkers and infectious pathogens using crude biosamples. The platform exploited the dual functionality of silica superparamagnetic particles (SSP) for solid phase extraction of DNA and magnetic actuation. This enabled the integration of sample preparation and genetic analysis within discrete droplets, including the steps of cell lysis, DNA binding, washing, elution, amplification and detection. The microfluidic device was self contained, with all reagents stored in droplets, thereby eliminating the need for fluidic coupling to external reagent reservoirs. The device incorporated unique surface topographic features to assist droplet manipulation. Pairs of micro-elevations were created to form slits that facilitated efficient splitting of SSP from droplets. In addition, a compact sample handling stage, which integrated the magnet manipulator, the droplet microfluidic device and a Peltier thermal cycler, was built for convenient droplet manipulation and real-time detection. The feasibility of the platform was demonstrated by analysing ovarian cancer biomarker Rsf-1 and detecting Escherichia coli with real time polymerase chain reaction and real time helicase dependent amplification.  相似文献   

10.
An ultra-sensitive and highly selective parathion methyl(PM) detection method by surface plasmon resonance(SPR) combined with molecularly imprinted films(MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip.Template PM molecules were quickly removed by an organic solution of acetonitrile/acetic acid(9:1,v/v), causing a shift of 0.58 in SPR angle. In the concentrations range of 10à13–10à10mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10à13mol/L. The selectivity of the thin PM-imprinted film against diuron,tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.  相似文献   

11.
We report a computerized microfluidic real time embryo culture and assay device that can perform automated periodic analyses of embryo metabolism. This automated program uses a modified "gated injection" scheme (sample injection, reagent mixing, enzyme reaction of 15 min incubation, and sample detection) to sequentially measure fluorescence from sample, reference, and background (without any analyte) every hour. Measurements assessed with reference solutions demonstrated the stability of these microfluidic measurements over a 24 h period. Furthermore, this system was able to measure time dependent nutrient consumption by single or multiple (10) live mouse blastocyst-stage embryos with pmol h(-1) sensitivity. Mechanical deformation-based microfluidic actuation created by computerized movement of Braille pins enables automated fluid pumping and valving sequences without unwanted gravity-driven backflow or exposure to electrical fields as would be required in electrokinetic schemes. The convenient, non-invasive, and automated nature of these assays open the way for the development of integrated microfluidic platforms for practical single embryo culture and real time biochemical analysis to assess embryo viability and select embryos with the greatest implantation potential, thus improving success in clinical assisted reproductive technology laboratories.  相似文献   

12.
High-throughput preparation of multi-component solutions is an integral process in biology, chemistry and materials science for screening, diagnostics and analysis. Compact microfluidic systems enable such processing with low reagent volumes and rapid testing. Here we present a microfluidic device that incorporates two gradient generators, a tree-like generator and a new microfluidic active injection system, interfaced by intermediate solution reservoirs to generate diluted combinations of input solutions within an 8 × 8 or 10 × 10 array of isolated test chambers. Three input solutions were fed into the device, two to the tree-like gradient generator and one to pre-fill the test chamber array. The relative concentrations of these three input solutions in the test chambers completely characterized device behaviour and were controlled by the number of injection cycles and the flow rate. Device behaviour was modelled by computational fluid dynamics simulations and an approximate analytic formula. The device may be used for two-dimensional (2D) combinatorial dilution by adding two solutions in different relative concentrations to each of its three inputs. By appropriate choice of the two-component input solutions, test chamber concentrations that span any triangle in 2D concentration space may be obtained. In particular, explicit inputs are given for a coarse screening of a large region in concentration space followed by a more refined screening of a smaller region, including alternate inputs that span the same concentration region but with different distributions. The ability to probe arbitrary subspaces of concentration space and to control the distribution of discrete test points within those subspaces makes the device of potential benefit for high-throughput cell biology studies and drug screening.  相似文献   

13.
A sensitive and selective determination of glycyrrhizin (GC) based on surface plasmon resonance (SPR) was performed by using an anti-GC monoclonal antibody (GC-MAb) and GC-bovine serum albumin (GC-BSA) conjugate (antigen). GC-BSA was immobilized on an Au thin film of the SPR sensor chip by physical adsorption, and GC determinations were performed by an indirect competitive method. The addition of GC into the GC-MAb solution (5 microg/ml) was found to decrease the incident-angle shift sharply because of an inhibition effect of GC. The RSDs (n = 3) of each point were less than 4%. The lowest detection limit for GC by SPR was almost the same as that by ELISA, 60-75 ng/ml. An evaluation of the affinity constant between GC-MAb and GC using the data from ELISA and those from SPR measurements was performed. The values of the association constant (KA) from three different analyses of ELISA data and from SPR measurements are discussed in detail. As a whole, the affinity constant (KA) between GC-MAb and GC was on the order of 10(7) M(-1).  相似文献   

14.
In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300 V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption.  相似文献   

15.
This study develops a novel capillary electrophoresis (CE) microfluidic device featuring a conventional cross-form injection system and an expansion chamber located at the inlet of the separation channel. The combined injection system/expansion chamber arrangement is designed to deliver a high-quality sample band into the separation channel such that the detection performance of the device is enhanced. Numerical simulations are performed to investigate the electrokinetic transport processes in the microfluidic device and to establish the optimal configuration of the expansion chamber. The results indicate that an expansion chamber with an expansion ratio of 2.5 and an expansion length of 500 microm delivers a sample plug with the correct shape and orientation. With this particular configuration, the peak intensities of the sample are sharp and clearly distinguishable in the detection region of the separation channel. Therefore, this configuration is well suited for capillary electrophoresis applications which require a highly sensitive resolution of the sample plug. The novel CE microfluidic device developed in this study has an exciting potential for use in high-performance, high-throughput chemical analysis applications and in many other applications throughout the field of micro-total-analysis-systems.  相似文献   

16.
从实验和理论两方面详细研究了金银合金膜表面等离子体共振(SPR)传感器在可见光波段的敏感特性. 实验方面,通过在玻璃基底上溅射50 nm厚的金银合金薄膜制备了一种新型的SPR传感芯片,并且自行搭建了基于Kretschmann 结构的波长检测型SPR传感器测试平台. 利用不同浓度的氯化钠(NaCl)水溶液和浓度为10 μmol·L-1的牛血清蛋白(BSA)水溶液分别作为折射率样品和分子吸附样品,研究了传感器的折射率灵敏度和吸附灵敏度,并与金膜和银膜SPR传感器进行了对比研究. 结果表明,对于折射率灵敏度的测试,金银合金膜SPR传感器大幅高于金膜SPR传感器,略低于银膜SPR传感器;而对于吸附敏感的研究,金银合金膜SPR传感器的灵敏度与银膜SPR传感器相近,是金膜SPR传感器的3倍. 理论方面,利用菲涅尔公式和等效折射率计算公式仿真计算了这三种薄膜结构的SPR传感器的灵敏度和精确度,结果指出金银合金膜SPR传感器的灵敏度与银膜SPR传感器接近,是常规金膜SPR传感器的2.31倍,而半高峰宽仅为金膜和银膜SPR传感器的1.36 倍. 在稳定性方面,金银合金膜SPR传感器与金膜SPR传感器均具有良好的化学稳定性,而银膜SPR传感器较易氧化,使用寿命低,不常被采用. 综上,金银合金膜在改善传感器灵敏度的同时,不会降低精度,是一种高灵敏、低成本、良好稳定性的SPR传感器敏感材料.  相似文献   

17.
本实验建立了表面等离子体共振(SPR)生物传感器检测3-吲哚乙酸(IAA)的方法。制备了两种SPR生物传感器检测IAA:传统模式的SPR生物传感器1和Au/Ag合金纳米粒子增敏的SPR生物传感器2。结果发现:传感器1在IAA浓度范围为175~350μg/L时,浓度与其波数位移值呈线性关系,检出限为25μg/L(S/N=3);传感器2在IAA浓度范围为17.5~250μg/L时,浓度与其波数位移值呈线性关系,检出限为2.2μg/L(S/N=3)。说明基于Au/Ag合金纳米粒子的传感器2比传感器1有较高的灵敏度和较低的检出限。加标回收实验测得加标回收率范围为96%~100.2%,平均值为98.4%。本实验制备的SPR生物传感器具有较好的精密度、稳定性、重现性和特异性。  相似文献   

18.
The surface plasmon resonance (SPR) sensor was fabricated by depositing silver thin film on the surface of hetero-core structured fiber optic. The SPR sensor based on hetero-core structured fiber optic was applied to measure refractive index of sucrose solution and fruit juices. The sensor part was immersed in sucrose solution and/or juice and the propagating light spectra were measured. It was shown that the fiber optic SPR sensor showed a good agreement with that measured by conventional refractometer.  相似文献   

19.
A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2,4-dichlorophenol) antibody using a gold binding polypeptide (GBP) and protein G. The SPR response based on the antigen-antibody reaction in a flow system was measured by injecting a 2,4-dichlorophenol sample solution into the flow system in which the SPR sensor was located. In a direct immunoassay system using the modified sensor chip, no significant SPR angle shift less than 0.001° was observed when a 25 ppm of 2,4-dichlorophenol solution was injected. In order to improve the sensitivity of the SPR sensor, an indirect competitive immunoassay method was used in conjunction with the SPR sensor system using 2,4-dichlorophenol conjugated with bovine serum albumin (BSA). In the competitive assay, a 350 ppm 2,4-dichlorophenol-BSA conjugate solution containing 2,4-dichlorophenol at various concentrations (10-250 ppb) were injected into the SPR sensor system. The sensitivity of this indirect immunoassay was found to be extremely sensitive, compared to the direct one, and a detection limit of 20 ppb was estimated. Verification that the use of GBP for immobilizing the antibody on the sensor chip enhanced the sensitivity to 2,4-dichlorophenol was obtained by comparing the procedure with another modification, in which BSA was used instead of GBP for immobilizing the antibody on the sensor chip. The affinity constant of 2,4-dichlorophenol and its conjugate to the antibody were estimated form the SPR response.  相似文献   

20.
从实验和理论两方面详细研究了金银合金膜表面等离子体共振(SPR)传感器在可见光波段的敏感特性.实验方面,通过在玻璃基底上溅射50 nm厚的金银合金薄膜制备了一种新型的SPR传感芯片,并且自行搭建了基于Kretschmann结构的波长检测型SPR传感器测试平台.利用不同浓度的氯化钠(NaCl)水溶液和浓度为10μmol·L-1的牛血清蛋白(BSA)水溶液分别作为折射率样品和分子吸附样品,研究了传感器的折射率灵敏度和吸附灵敏度,并与金膜和银膜SPR传感器进行了对比研究.结果表明,对于折射率灵敏度的测试,金银合金膜SPR传感器大幅高于金膜SPR传感器,略低于银膜SPR传感器;而对于吸附敏感的研究,金银合金膜SPR传感器的灵敏度与银膜SPR传感器相近,是金膜SPR传感器的3倍.理论方面,利用菲涅尔公式和等效折射率计算公式仿真计算了这三种薄膜结构的SPR传感器的灵敏度和精确度,结果指出金银合金膜SPR传感器的灵敏度与银膜SPR传感器接近,是常规金膜SPR传感器的2.31倍,而半高峰宽仅为金膜和银膜SPR传感器的1.36倍.在稳定性方面,金银合金膜SPR传感器与金膜SPR传感器均具有良好的化学稳定性,而银膜SPR传感器较易氧化,使用寿命低,不常被采用.综上,金银合金膜在改善传感器灵敏度的同时,不会降低精度,是一种高灵敏、低成本、良好稳定性的SPR传感器敏感材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号